Competing risks quantile regression at work : in-depth exploration of the role of public child support for the duration of maternity leave

Document Type

Journal article

Source Publication

Journal of Applied Statistics

Publication Date

4-11-2016

Volume

Advance online publication

Publisher

Routledge

Keywords

Dependent competing risks, quantile regression, quantile crossings

Abstract

Despite its emergence as a frequently used method for the empirical analysis of multivariate data, quantile regression is yet to become a mainstream tool for the analysis of duration data. We present a pioneering empirical study on the grounds of a competing risks quantile regression model. We use large-scale maternity duration data with multiple competing risks derived from German linked social security records to analyse how public policies are related to the length of economic inactivity of young mothers after giving birth. Our results show that the model delivers detailed insights into the distribution of transitions out of maternity leave. It is found that cumulative incidences implied by the quantile regression model differ from those implied by a proportional hazards model. To foster the use of the model, we make an R-package (cmprskQR) available.

DOI

10.1080/02664763.2016.1164836

Print ISSN

02664763

E-ISSN

13600532

Publisher Statement

Copyright © 2016 Taylor & Francis. Access to external full text or publisher's version may require subscription.

Full-text Version

Publisher’s Version

Language

English

Recommended Citation

Dlugosz, S., Lo, S. M. S., & Wilke, R. A. (2016). Competing risks quantile regression at work: In-depth exploration of the role of public child support for the duration of maternity leave. Journal of Applied Statistics. Advance online publication. doi: 10.1080/02664763.2016.1164836

Share

COinS