Time delayed causal gene regulatory network inference with hidden common causes

Document Type

Journal article

Source Publication

PLoS ONE

Publication Date

9-22-2015

Volume

10

Issue

9

First Page

1

Last Page

47

Publisher

Public Library of Science

Abstract

Inferring the gene regulatory network (GRN) is crucial to understanding the working of the cell. Many computational methods attempt to infer the GRN from time series expression data, instead of through expensive and time-consuming experiments. However, existing methods make the convenient but unrealistic assumption of causal sufficiency, i.e. all the relevant factors in the causal network have been observed and there are no unobserved common cause. In principle, in the real world, it is impossible to be certain that all relevant factors or common causes have been observed, because some factors may not have been conceived of, and therefore are impossible to measure. In view of this, we have developed a novel algorithm named HCC-CLINDE to infer an GRN from time series data allowing the presence of hidden common cause(s). We assume there is a sparse causal graph (possibly with cycles) of interest, where the variables are continuous and each causal link has a delay (possibly more than one time step). A small but unknown number of variables are not observed. Each unobserved variable has only observed variables as children and parents, with at least two children, and the children are not linked to each other. Since it is difficult to obtain very long time series, our algorithm is also capable of utilizing multiple short time series, which is more realistic. To our knowledge, our algorithm is far less restrictive than previous works. We have performed extensive experiments using synthetic data on GRNs of size up to 100, with up to 10 hidden nodes. The results show that our algorithm can adequately recover the true causal GRN and is robust to slight deviation from Gaussian distribution in the error terms. We have also demonstrated the potential of our algorithm on small YEASTRACT subnetworks using limited real data.

DOI

10.1371/journal.pone.0138596

E-ISSN

19326203

Funding Information

This work was supported by The Research Grants Council of the Hong Kong Special Administrative Region (http://www.ugc.edu.hk/eng/rgc/index.htm), Project References 414413: KSL and LU310111: MLW. {414413: KSL, LU310111: MLW}

Publisher Statement

Copyright © 2015 Lo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Full-text Version

Publisher’s Version

Language

English

Recommended Citation

Lo, L.-Y., Wong, M.-L., Lee, K.-H., & Leung, K.-S. (2015). Time delayed causal gene regulatory network inference with hidden common causes. PLoS ONE, 10(9): e0138596. doi:10.1371/journal.pone.0138596

Share

COinS