Title
Generalized do-calculus with testable causal assumptions
Document Type
Book chapter
Source Publication
Proceedings of the 11th International Conference on Artificial Intelligence and Statistics (AISTATS-07)
Publication Date
1-1-2007
First Page
667
Last Page
674
Abstract
A primary object of causal reasoning concerns what would happen to a system under certain interventions. Specifically, we are often interested in estimating the probability distribution of some random variables that would result from forcing some other variables to take certain values. The renowned do-calculus (Pearl 1995) gives a set of rules that govern the identification of such post-intervention probabilities in terms of (estimable) pre-intervention probabilities, assuming available a directed acyclic graph (DAG) that represents the underlying causal structure. However, a DAG causal structure is seldom fully testable given preintervention, observational data, since many competing DAG structures are equally compatible with the data. In this paper we extend the do-calculus to cover cases where the available causal information is summarized in a so-called partial ancestral graph (PAG) that represents an equivalence class of DAG structures. The causal assumptions encoded by a PAG are significantly weaker than those encoded by a full-blown DAG causal structure, and are in principle fully testable by observed conditional independence relations.
Publisher Statement
Copyright ©2007 International Conference on Artificial Intelligence and Statistics.
Access to external full text or publisher's version may require subscription.
Full-text Version
Publisher’s Version
Language
English
Recommended Citation
Zhang, J. (2007). Generalized do-calculus with testable causal assumptions. In M. Meila & X. Shen (Eds.), Proceedings of the 11th International Conference on Artificial Intelligence and Statistics (AISTATS-07) (pp.667-674). Retrieved from http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS07_Zhang.pdf