Nonlinear pricing in a finite economy
Document Type
Journal article
Source Publication
Journal of Public Economics
Publication Date
3-1-1982
Volume
17
Issue
2
First Page
157
Last Page
159
Abstract
We study majority voting over a bidimensional policy space when the voters' type space is either uni- or bidimensional. We show that a Condorcet winner fails to generically exist even with a unidimensional type space. We then study two voting procedures widely used in the literature. The Stackelberg (ST) procedure assumes that votes are taken one dimension at a time according to an exogenously specified sequence. The Kramer-Shepsle (KS) procedure also assumes that votes are taken separately on each dimension, but not in a sequential way. A vector of policies is a Kramer-Shepsle equilibrium if each component coincides with the majority choice on this dimension given the other components of the vector. We study the existence and uniqueness of the ST and KS equilibria, and we compare them, looking e.g. at the impact of the ordering of votes for ST and identifying circumstances under which ST and KS equilibria coincide. In the process, we state explicitly the assumptions on the utility function that are needed for these equilibria to be well behaved. We especially stress the importance of single crossing conditions, and we identify two variants of these assumptions: a marginal version that is imposed on all policy dimensions separately, and a joint version whose definition involves both policy dimensions.
DOI
10.1016/0047-2727(82)90018-4
Print ISSN
00472727
Publisher Statement
Copyright © 1982 North-Holland Publishing Company
Access to external full text or publisher's version may require subscription.
Full-text Version
Publisher’s Version
Language
English
Recommended Citation
Guesnerie, R., & Seade, J. (1982). Nonlinear pricing in a finite economy. Journal of Public Economics, 17(2), 157-159. doi: 10.1016/0047-2727(82)90018-4