Discovering knowledge from noisy databases using genetic programming

Document Type

Journal article

Source Publication

Journal of the American Society for Information Science

Publication Date

1-1-2000

Volume

51

Issue

9

First Page

870

Last Page

881

Abstract

In data mining, we emphasize the need for learning from huge, incomplete, and imperfect data sets. To handle noise in the problem domain, existing learning systems avoid overfitting the imperfect training examples by excluding insignificant patterns. The problem is that these systems use a limiting attribute-value language for representing the training examples and the induced knowledge. Moreover, some important patterns are ignored because they are statistically insignificant. In this article, we present a framework that combines Genetic Programming and Inductive Logic Programming to induce knowledge represented in various knowledge representation formalisms from noisy databases. The framework is based on a formalism of logic grammars, and it can specify the search space declaratively. An implementation of the framework, LOGENPRO (The Logic grammar based GENetic PROgramming system), has been developed. The performance of LOGENPRO is evaluated on the chess end-game domain. We compare LOGENPRO with FOIL and other learning systems in detail, and find its performance is significantly better than that of the others. This result indicates that the Darwinian principle of natural selection is a plausible noise handling method that can avoid overfitting and identify important patterns at the same time. Moreover, the system is applied to one real-life medical database. The knowledge discovered provides insights to and allows better understanding of the medical domains.

DOI

10.1002/(SICI)1097-4571(2000)51:9<870::AID-ASI90>3.0.CO;2-R

Print ISSN

23301635

E-ISSN

23301643

Publisher Statement

Copyright © 2000 John Wiley & Sons, Inc

Access to external full text or publisher's version may require subscription.

Full-text Version

Publisher’s Version

Language

English

Recommended Citation

Wong, M. L., Leung, K. S., & Cheng, J. C. Y. (2000). Discovering knowledge from noisy databases using genetic programming. Journal of the American Society for Information Science, 51(9), 870-881. doi: 10.1002/(SICI)1097-4571(2000)51:9<870::AID-ASI90>3.0.CO;2-R

Share

COinS