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ABSTRACT 
 

  The Effect of Online Consumer Reviews on New Product Sales: 

A Study of Amazon.com 

 

by 

 

GUO Xiaoning  

 

 Master of Philosophy 

     

 In recent years, online word-of-mouth (WOM) communication in the form of 
online consumer reviews has become a major information source for consumers 
planning to purchase a new product. With the help of online reviews, consumers can 
access diverse opinions from others who have bought or used the new products 
before making their purchase decisions. This study compares the impact of online 
reviews on the sales of two types of new products (experience vs. search products) 
over time, in terms of the volume and valence of online consumer reviews. Using the 
data collected from Amazon.com over a period of nine months, we find that the 
volume of online consumer reviews has a greater effect on the new product sales in 
the late stage of product life cycle (PLC) than in the early stage of PLC. Moreover, 
the effect of valence of online consumer reviews is greater than that of volume of 
online consumer reviews. Online negative consumer reviews affect new product 
sales more than online positive consumer review, but not in a negative way. The 
results also indicate that the volume and valence of online consumer reviews have 
greater impact on experience products than search products. The findings suggest 
that online consumer reviews provide a meaningful decision aid to consumers 
planning to purchase new products and that online WOM gains momentum over time 
and significantly affects the sales of new products beyond the initial period. 
Practitioners need to pay greater attention to online WOM, devise suitable marketing 
strategies, and promote consumer advocacy to generate positive reviews when they 
launch new products. They may also incorporate the valuable consumer feedback in 
the development of new products.  
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CHAPTER 1. INTRODUCTION 

 
 
 
 

1.1 Rationale  

       With the development of e-commerce, the Internet has emerged as an 

important channel for marketing new products to consumers, and it has become the 

mainstay of electronic commerce strategies of a rapidly growing number of 

organizations (Subramaniam et al. 2000). Meanwhile, consumers are often 

confronted with new products, benefits and costs of which are not fully known to 

them before purchase. Although consumers can learn about the products by trying 

them, by doing so, they bear the risk that the experience will be negative. Instead, 

consumers would like to wait and observe whether other customers like the products 

and what consumers say about new products (McFadden and Train 1996). 

      In recent years, online WOM communication in the form of online consumer 

reviews has become a major informational source for consumers and practitioners 

(Hu et al. 2008). With the help of online consumer reviews, consumers can search 

much information online to access diverse opinions from different people who have 

bought or used the new products, and can make reasonable decisions by themselves. 

For example, a survey of Bizrate.com found that 44% of users consulted opinion 

sites prior to making a purchase (Piller 1999). This survey also found that 59% of 

respondents considered consumer-generated reviews to be more valuable than expert 

reviews. A recent survey of DoubleClick(2004) also finds that WOM plays a very 

important role in consumers’ purchasing process for many types of products and for 

some goods, such as electronics and home products, product review websites outrank 



 
 

2

all other media in influencing customer decisions. As these results suggest, managers 

are interested in online WOM because it is often an important driver of consumer 

behavior, such as the adoption of a new technology, the decision to watch a TV show, 

or the choice of which laptop to purchase. Therefore, online WOM is important 

source of information for new products.  

   On the one hand, online consumer reviews provide a good opportunity for 

practitioners to promote new products. Because online WOM is regarded as a free 

advertising and is accessible to numerous people and consumers trust online 

consumer reviews, positive reviews can increase consumer demand for products 

(Reinstein and Snyder 2005). Similarly, Chevalier and Mayzlin (2006) also show that 

practitioners can provide promotional reviews on the Internet to increase profitability. 

On the other hand, consumers may prefer to rely on WOM information rather than 

advertising information about products (Herr et al. 1991). This may be because 

WOM information, as compared with marketer-provided attribute information or 

advertisements, is more vivid (Herr et al. 1991), easier to use, or perceived as more 

trustworthy because it is based on others’ experiences (Smith 1993). Therefore, 

consumers are willing to use online WOM to make decision about new products.  

    Recognizing the significant value of online consumer reviews as a source of 

information for potential customers, e-marketers enable and encourage consumers to 

post product reviews and opinions on their e-retailer sites (Chevalier and Mayzlin 

2006; Tedeschi 1999; Yang and Peterson 2003; Bart et al. 2005). A consumer looking 

for a book at Amzon.com, for example, is offered not only the editorial review 

typically printed on the book’s cover jacket but also ratings and comments by fellow 

consumers who have read the book. Amazon has eliminated its entire budget for 

television and general-purpose print advertising since it believes that its consumers 
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trust other consumers’ opinions more than they do traditional advertising, and that 

such online WOM is thus more effective in influencing consumer behavior 

(Thompson 2003). Although books may have been one of the first categories to 

inspire consumer reviews on the Web, Amazon.com dedicates itself to online WOM 

across a wide variety of product categories, including electronics and video games.  

    Noticing these changes, many researchers have begun to investigate the 

relationship between online consumer reviews and new product sales, and found a 

positive relationship between the mean of online consumer review scores and new 

product sales (Chevalier and Goolsbee 2003; Godes and Mayzlin 2004; Chevalier 

and Mayzlin 2006). However, some questions remain unaddressed. First, which 

attribute of online consumer reviews is more important for new product sales, 

volume or valence? Second, is the effect of online positive consumer reviews and 

negative consumer reviews on new product sales different? Third, is the effect of 

online consumer review different for the sales of new search products versus those of 

new experience products? Fourth, do online consumer reviews affect new product 

sales more in the late stage of PLC than in the early stage of PLC? We conduct a 

longitudinal study on the effect of online WOM on new product sales to address 

these issues.  

1.2 Purpose of the Study 

    This research examines the effect of online consumer reviews on new product 

sales, in terms of types of products, volume and valence of online consumer reviews 

and temporal effect. The first objective is to compare the effect of different measures 

of online WOM on new product sales. The second objective is to provide a better 

understanding of the effect of online positive consumer reviews and online negative 

consumer reviews on new product sales. The third objective is to compare the effect 
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of online consumer reviews on sales of different types of new products, i.e. search vs. 

experience products. The fourth objective is to compare the effect of online WOM in 

the different stage of PLC.  

1.3 Significance of Study 

      From a theoretical perspective, this study makes three contributions. First, 

this study first compares the impact of online consumer reviews on sales of different 

types of new products so that it gives us greater insight into the effect of online 

consumer reviews of different products on sales. Second, this study compares the 

effect of online positive consumer reviews with that of online negative consumer 

reviews on new product sales so that we have greater understanding of the effect of 

valence of online consumer reviews on new product sales. Third, this study compares 

the different measures of online consumer reviews with respect to their effects on 

new product sales. Fourth, this study tests several hypotheses based on the 

Innovation Adoption Theory in online environment.  

     From a practical perspective, it is important for practitioners to recognize the 

importance of online consumer reviews as online WOM. Second, according to online 

consumer reviews, practitioners can develop more suitable marketing strategies and 

promote consumer advocacy to create positive reviews when they launch new 

products. Third, this study provides suggestions for manufacturers to incorporate 

consumer feedback in further development of new products.  

1.4 Organization of the Thesis 

     This thesis is organized into six chapters. A brief description of each chapter is 

as follows. Chapter 2 reviews significant existing literature and related theories about 
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the relationship between online and offline WOM and new product sales. Chapter 3 

presents theoretical framework, proposes the main hypotheses and provides 

corresponding explanations for each hypothesis. Chapter 4 discusses the 

operationalization of variables, data collection method, and analytical methods for 

testing hypotheses.  Chapter 5 presents the results of the statistical analyses of data. 

All findings relevant to the study’s hypotheses are presented in appropriate tables and 

figures. Chapter 6 concludes with a discussion of the findings, their theoretical and 

managerial implications, limitations and suggestions for future works.  
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                   CHAPTER2. LITERATURE REVIEW 

 
 
     The purpose of this chapter is to discuss the background of this study and 

review academic literature in order to provide a basis for viewing this study’s results 

in relation to previous findings. 

2.1 Word of Mouth 

One of the earliest researchers on WOM was Arndt (1967) defined it as oral, 

person to person communication between a receiver and communicator and the 

receiver is perceived as non-commercial with respect to a brand, product or service. 

However, the advent of internet has brought new realization for both practitioners 

and consumers the way they use to pass or receive messages regarding the products 

and services, which introduced new platform for traditional WOM communication 

(Datta et al. 2005; Granitz and Ward 1996). Online communities allow opinions of a 

single individual to instantly reach thousands, or even millions of other people, and 

affect other consumers’ decision making about products or services. Researchers find 

a new way to measure WOM and further investigate the effect of WOM in many 

fields. Practitioners also observe the effect of WOM on sales of products and adjust 

the marketing strategies in time. 

 2.1.1 The Concept of Offline and Online WOM 

    Offline WOM has been described as the “world’s most effective, yet least 

understood marketing strategy” (Misner 1994). In the marketing context, it is the 

informal exchange of positive and negative information between individuals about a 
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particular product or service. Negative WOM has been documented to spread quicker 

than positive WOM, making it “a fearful phenomenon to practitioners who cannot 

grant 100% customer satisfaction, and a two-edged sword as informal discussions 

among consumers can make or break a product” (Helm 2000). To further support the 

power of WOM, Grewal et al. (2003) describe how it “forms the basis of 

interpersonal communications and significantly influences product evaluations and 

purchase decisions” and that “WOM has been shown to be more powerful than 

printed information because WOM information is considered to be more credible”.  

   Online WOM is basically the extension of offline WOM on the Internet. It is 

defined as “any positive or negative statement made by potential, actual or former 

customers about a product or company, which is made available to a multitude of 

people and institutions via the Internet” (Hennig-Thurau 2004). Various websites, 

such as, Epinions.com, Bizrate.com, Ciao.com, and Dooyoo.com all provide forums 

where consumers can discuss and rate various products and services, illustrating the 

power of the exchange of communication in the online environment.    

2.1.2 Offline versus Online WOM 

Compared with offline WOM, online WOM has several distinctive features that 

have been discussed in the existing literature.  

 Social Ties:  As Bickart and Schindler (2001) argued, typical offline WOM 

communication consists of spoken words exchanged with one friend or relative in a 

face-to-face situation. By contrast, online WOM usually involves personal 

experiences and opinions transmitted through the written word. An advantage of the 

written word is that people can seek information at their own pace. Writing may also 

transmit the information in a more intact manner and make the information appear 
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more formal. According to Marshall McLuhan (as cited in Griffin 2003), written 

communication is also more logical than oral communication, as letter follows letter 

in an orderly line in writing, and logic is modeled on that step-by-step linear 

progression. The new media technology, internet, has changed the form of classic 

interpersonal communication (sender-message-receiver) by introducing a new form 

of communicator, a forwarder or transmitter (Cathcart and Gumpert 1986). 

Unprecedented Scalability and Speed of Diffusion:  Compared to offline WOM, 

online WOM is more influential due to its speed, convenience, one-to-many reach, 

and its absence of face-to-face human pressure (Phelps et al. 2004). Moreover, by 

using search engines, one can seek out the opinion of strangers. This seldom happens 

in conventional interpersonal context where opinion providers are embedded in 

social networks and well-known people may be more credible. This escalation in 

audience is changing the dynamics of many industries in which WOM has 

traditionally played an important role. For example, the entertainment industry has 

found that the rapid spread of WOM is shrinking the life cycles of its products and 

causing it to rethink its pre-and post-launch marketing strategies (Munoz 2003). In 

fact, movies are seeing much more rapid change in revenues between the opening 

weekend and second weekend, suggesting that public opinion is spreading faster.  

Persistence and Measurability: In offline settings, WOM disappears into the air. In 

online settings, traces of WOM can be found in many publicly available Internet 

forums, such as review sites, discussion groups, chat rooms, and web blogs. This 

public data provide organizations with the ability to quickly and accurately measure 

WOM as it happens by mining information available on Internet forums (Dellarocas 

et al. 2004).   
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2.2 The Impact of Offline WOM on Sales  

2.2.1 Traditional Measurement Techniques   

    Traditional attempts to measure WOM are based on three principal techniques: 

inference, surveys and controlled experiments. Examples of the first technique 

include Foster and Rosenzweig (1995) in which the farmers in the dataset were never 

explicitly asked about their WOM behavior. Instead, by comparing across villages, 

the researchers assume that “learning spillovers” take place within villages at a 

higher rate than they do across villages. Similarly, Reingen et al. (1984) infer the 

presence of interpersonal communication by comparing women who live in the same 

house with those that do not. The presumption is that those that live in closer 

proximity are more likely to exchange information with each other. Finally, Bass 

(1969) and those that have extended his model also infer WOM from other data. In 

these models, the coefficient of imitation (or coefficient of internal influence) is 

estimated using aggregate-level sales data.  

    Surveys remain the most popular method to study WOM. Bowman and 

Narayandas (2001), Brown and Reingen (1987), Reingen and Kernan (1986) and 

Richins (1983) all base their analyses on proprietary surveys designed to test a 

specific hypothesis. Van den Bulte and Lilien (2001) and Anderson (1998) draw on 

the existence of survey-based data that were prepared for other, more general, 

purposes. The attraction of the survey in this context is precisely that one is able to 

ask the direct question, “Did you tell somebody about X?” In some cases, like 

Bowman and Narayandas (2001), one might even ask, “How many did you tell?” 

Additionally, some researchers have found it useful to design and use surveys to map 

out social networks. For example, Reingen and Kernan (1986) used surveys to map 
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out the entire social network comprised of the customers of a piano tuner. With this, 

they were able to understand which people played particularly important roles in the 

referral process. Brown and Reingen (1987) did so for piano teachers. Similarly, the 

dataset used by Van den Bulte and Lilien (2001) contained data for each physician 

about the other physicians with whom he or she discussed medical practices and 

from whom he or she sought advice.  

Laboratory experiment is another popular method for inferring properties of 

WOM (Borgida and Nisbett 1977; Herr et al. 1991 as two representative examples of 

a large literature). In the Borgida and Nisbett experiment, college students received 

either extensive or detailed course evaluations based on ratings from a large sample 

of students or brief, face-to-face, course comments from a single individual. In the 

Herr et al. experiment, they asked students to hear that another student’s father had 

either a good or a bad experience with his car’s reliability to test the students’ 

impressions of that brand. However, the issue with experiments is the extent to which 

properties identified in a controlled setting generalize to larger, real-world settings.  

2.2.2 The Impact of Offline WOM on Sales  

    From a theoretical perspective, there exists ample support for the idea that 

WOM communications may in some cases impact a firm’s sales. The early studies of 

learning from others provide evidence that offline WOM communication may affect 

others’ decision in different social contexts (McFadden and Train 1996). Smallwood 

and Conlisk (1979) show that a product may capture the entire market regardless of 

its quality through some type of learning process. Banerjee (1993) presents two 

models that suggest that people are influenced by others’ opinions. In fact, rational 

agents may ignore their own private information in favor of information inferred 
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from others’ actions. This may lead to “herding” in which all agents select the same 

action, which at times may be suboptimal. A similar context is analyzed by 

Bikhchandani et al. (1991). An important implication of the latter group’s work is 

that the introduction of new information can cause discontinuous shifts in the actions 

of the agents. This may explain fads and bubbles. In addition, Kirman (1993) 

demonstrated a similar result that learning from others can cause a significant 

differentiation in market share between two products with the same quality. 

The results about the impact of offline WOM on sales are mixed. Bass (1969) 

specifies a model of new product diffusion that explicitly incorporates interpersonal 

communication. He includes a parameter q: the coefficient of imitation.” Due to 

saturation effects, his model assumes that the impact of offline WOM 

communication on adoption increases with time early in the product’s life cycle and 

then decreases with time later on. This model has been shown to have some success 

in predicting the growth path of new products based on just a small number of data 

points. It is important to note that offline WOM is never explicitly measured in the 

estimation of this model, which is accomplished solely with an aggregate time series 

of sales data. He also identifies offline WOM as the primary diver in the diffusion of 

innovations. Reingen et al. (1984) conduct a survey of the members of a sorority in 

which they measure brand preference congruity as a function of their residential 

location. Specifically, some of the women lived in the sorority house and others did 

not. They found that those that lived together had more congruent brand preferences 

than those that did not. Presumably, those that lived together had more opportunities 

for interaction and thus offline WOM communication was more prevalent. Foster and 

Rosenzweig (1995) performed a similar study in a very different context. They 

investigate the adoption of high-yield varieties (HYV) of seeds among Indian 
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farmers. They found that the profitability of farmers employing the HYV’s was 

significantly higher as the overall adoption rate of the village increased. They 

interpret this as a learning spillover in that the more experienced one’s neighbors 

become with a new technology, the better one is at employing it. Again, the 

presumption here is that significant interpersonal communication at the village level 

facilitates the flow of information regarding the new technology. They also present 

evidence that offline WOM has a positive but small effect on the farmers’ rate of 

adoption of the new HYV’s. Katz and Lazarsfeld (1955) find that offline WOM plays 

the most important role in influencing the purchase of household goods. 

However, Van Den Bulte and Lilien (2001a) cast doubt on the role of offline 

WOM as a sales driver. They revisit the analysis by Coleman et al. (1966) who used 

offline WOM to explain adoption of tetracycline among physicians. The authors 

argue that the latter erred in their conclusion that social contagion was the driving 

factor behind physicians’ adoption of the new product under analysis: tetracycline. 

By specifying the information available to the physicians as well as their social 

networks, the authors show that marketing effort, and not interpersonal 

communication, plays a dominant role in physicians’ adoption decision. In Van de 

Bulte and Lilien (2001b), the same authors decompose the adoption process into an 

awareness phase and an evaluation/ final adoption phase. In this model, they find 

evidence of social contagion.  

2.3 The Impact of Online WOM on Sales 

2.3.1 The Form of Online WOM  

    The Internet provides various ways to obtain product-related information from 

consumers (Hennig-Thurau and Walsh 2004). In online environments, consumers 
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share their experiences, opinions, and knowledge with others via chat room, 

newsgroup, and electronic consumer forum.  

  (1)  Chat room: It allows “conversations” in type, and soon voice conversations 

will be more common. All those conversing are logged on at once and hear 

each other’s questions and answers.  

  (2)  Newsgroup: Once you “subscribe,” you receive e-mail message posted for all 

list members. This form of communication may also be called a “lisery.” 

(3) Electronic consumer forum: It allows any visitor to access brand information, 

users’ reviews, and aggregated ratings from users. This broader term 

encompasses bulletin boards, an electronic equivalent of a site on a wall for 

“postings.”  

     In an electronic consumer forum, WOM is commonly articulated in the form 

of online consumer reviews. Typically, reviews consist of text that describes the good 

being evaluated, and ratings that have a numerical score that evaluates the good. 

Ratings usually range from a score of 0 to 5, although this varies quite a bit from 

website to website. This study focuses on electronic consumer forum in terms of 

online consumer reviews.           

Online WOM 

Chat Room Newsgroup Electronic forums, blogs and 
message boards 

Expert 
Text Review  

Consumer  
Text Review  

R i

Consumer 
Response 

Expert 
Rating 

Consumer 
Rating 
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Figure1: The Form of Online WOM 

2.3.2 Three Attributes of Online WOM 

     The advent of the Internet introduced a new technique for measuring WOM: 

directly through Usenet groups and feedback forums. The majority of past research 

on online WOM has focused on the use of it as a revenue-forecasting tool. Three 

metrics of online WOM have received particular attention in this context: volume, 

valence, and dispersion. The rationale behind measuring volume, or the number of 

online messages posted on a topic, is that the more consumers discuss a product, the 

higher the chance that other consumers will become aware of it. Liu (2006) found 

that the volume of messages posted on Internet message boards about upcoming and 

newly released movies was a good predictor of their box office success. The theory 

behind valence, or the fraction of positive and negative opinions in the mix of 

messages, is that, in addition to building awareness, WOM carries important 

information about a product’s quality. Dellarocas et al. (2005) found that the valance 

of online ratings posted during a movie’s opening weekend was the most important 

predictor of that movie’s revenue trajectory in subsequent weeks. The reason behind 

measuring dispersion, or the spread of communication, is that WOM spreads quickly 

within communities, but slowly across them (Granovetter 1973). Godes and Mayzlin 

(2004) found that the dispersion of conversation about weekly TV shows across 

Internet communities had positive correlation with the evolution of viewership of 

these shows.  

    Although dispersion is one of most important measures of WOM in the 

literature, because this measure is difficult to construct from the current data, this 

study focuses on the volume to measure the total amount of WOM interactions, and 
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valence to capture the nature of WOM messages (i.e. whether they are positive or 

negative). 

2.3.3 The Impact of Online WOM on Sales  

With the emergence of online consumer reviews, some scholars are interested 

in the effect of online consumer reviews on new product sales and find that online 

WOM influences new product sales. Although the books used in such studies are not 

new products, yet other products scholars used are new products, such as new TV 

shows, new movies, and new types of beers. Chatterjee (2001) used a survey to 

examine the impact of negative online user reviews. The results indicate that the use 

of online WOM information depends on consumers’ intention of online purchasing. 

Consumers who are more familiar with a specific retailer are less likely affected by 

the negative reviews. Dellarocas et al. (2004) employed a modified Bass Diffusion 

Model to study the effects of online user reviews to forecast movie revenues. They 

find that online reviews of movies can be a good proxy for WOM and can be useful 

in revenue forecasting. Godes and Mayzlin (2004) use newsgroups as a measure of 

WOM to study TV show ratings. They find that online WOM can affect people to 

view new TV shows.   

However, the scholars have different opinions about the role of volume, 

valence and dispersion of online reviews on product sales. Which aspect of online 

WOM influences sales has not been decided. Some scholars think the valence in 

form of ratings influences the product sales. Zhang et al. (2004) developed a simple 

linear regression model showing that aggregate weekly user review ratings are 

positively correlated with the change of movie revenues. Chevalier and Mayzlin 

(2006) find that improvement in a book’s average ratings leads to an increase in 
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relative sales at that site. Dellarocas et al. (2004) use a Bass diffusion model to 

examine how user ratings posted in the opening week help explain the two Bass 

parameters (p= the external influence factor, and q= the internal influence factor), 

which are estimated from the box office history of a movie sample. They find that the 

volume of the first week’s user ratings and their density (defined as a ratio between 

the volume of ratings and the first week’s box office revenue), but not the numerical 

value of these ratings, are useful in explaining p. Nevertheless, the value of user 

ratings becomes a significant explanatory variable for q. However, some scholars 

hold a different opinion about it, considering other measures, such as volume or 

dispersion of online reviews, influence product sales. Duan et al. (2005) use similar 

user-ratings data but focus on the correlation between the daily measures of these 

ratings and the daily box office revenue in the first two weeks. They find that user 

ratings have no explanatory power for box office revenue, but the volume of ratings 

does. Godes and Mayzline (2004) use newsgroups as a measure of WOM to study 

TV show ratings. They find that, whereas the dispersion of conversations among 

different newsgroups has significant explanatory power, the associated volume of 

postings does not (Table 1). Overall, although researchers recognize the role of 

online WOM in consumers’ purchase decisions, the findings on the effect of different 

measures of online WOM on new product sales have been inconsistent and 

inconclusive. 
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Author  
 

Year IV  DV Research Findings 

Chen, Fay 
and Wang 

2003 • Product price 
• Product quality 
• Emotional 

response  
 

• The number 
of posting 

They find product quality and attractiveness design has a positive impact on 
generating positive online reviews; consumers are less sensitive to the 
product price; online consumer reviews are reliable.  

Chen and 
Xie  

2004 • The percentage 
of consumers’ 
who vote 
positive ratings 

• Length of time 
when products 
launch into the 
market  

• Whether to 
offer 
consumer 
reviews 

They construct an analytical model on how this new information channel 
influences a monopoly’s sales. They find that recommendations are positively 
associated with sales, while consumer ratings are not found to be related to 
sales. 

Godes and 
Mayzline 

2004 • The volume of 
WOM 

• The dispersion of 
WOM 

• Further sales They use newsgroups as a measure of WOM to study TV show ratings. They 
find that whereas the dispersion of conversations among different newsgroups 
has significant explanatory power, the associated volume of postings does 
not. 

Dellaroca
s, Awad 
and Zhang 

2004 • Online movie 
rating 

• Motion 
picture 
revenues  

They find that online reviews of movies can be a good proxy for WOM and 
can be useful in revenue forecasting.  

Li and 
Hitt 

2004 • Book ratings  • Book sales They find that online ratings for a product decrease over time, suggesting 
self-selection of reviewers.  

Duan, Gu 
and 
Whinston 

2005 • The volume of 
WOM 

• User review 
ratings  

• Box office 
revenues  
 

They find that user ratings have no explanatory power for box office revenue, 
but the volume of rating does.  

Table 1: Literatures in Online Consumer Reviews 
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Author  
 

Year IV  DV Research Findings 

Dellarocas 
Awad and 
Zhang 

2005 • Production, 
Marketing and 
Availability 

• Release strategy
• MPAA Ratings 
• Genre 
• Professional 

Critics  
• User Ratings 

• Future 
revenues  

They find the valence of user ratings to be the most significant explanatory 
variable; the gender diversity of online raters is also significant; The user 
ratings are more influential in predicting future revenues than average 
professional critic ratings. (Valence: the arithmetic mean of posted ratings 
during the same period.)  

Dellarocas 
Awad and 
Zhang 

2005 • The average 
valence of 
online ratings 

• Early 
opening 
weekend’ 
box office 
revenue  

They find that the propensity to rate a movie online is positively related to 
that movie’s marketing expenditures; public disagreement about a movie’s 
quality is associated with a high propensity to rate it online; people have a 
higher propensity to post online ratings for less popular/ less 
widely-released movies.  

Chevalier 
and 
Mayzlin  

2006 • Review ratings 
• Review length 
 

• Book sales They find that improvement in a book’s average ratings leads to an increase 
in relative sales at that site. This finding is contradicted to that of Chen and 
Xie (2004).  

Delarocas 
and 
Narayan  

2006 • Marketing 
budget  

• Average rating 
• The number of 

screen 
• Critic ratings 

• The 
propensity to 
postpurchase 
online WOM  

They examine what motivates consumers to post reviews for different kinds 
of movies. They find that most consumers rate movies very high or very 
low, resulting in a bimodal, U-shaped histogram.  

Table 1: Literatures in Online Consumer Reviews (continued) 
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Author  
 

Year IV  DV Research Findings 

Hu and 
Zhang 

2006 • Average Rating 
• Number of 

reviews 
• Sales rank  

• Further 
Sales  

They find that most online reviews on Amazon.com are distributed bimodally 
and provide conditions under which these ratings will converge to the real 
product quality.  

Gao, Gu 
and Lin 

2006 • Consumer 
review 

• Recent 
consumer 
reviews 

• Professional 
reviews 

• Community 
consensus  

They find that consumer reviews are heavily influenced by public opinions, 
such as consensus ratings, recent consumer ratings and professional ratings.  

Liu 2006 • Volume of WOM
• Valence of WOM

• Box office 
sales  

They find that most of this explanatory power comes from the volume of 
WOM and not from its valence, as measured by the percentage of positive 
and negative messages; WOM activities are the most active during the 
movie’s prerelease and opening week and audience holds relatively high 
expectations before release but become more critical in the opening week.  

Clemons, 
Gao and 
Hitt 

2006 • Average of 
high/low-end 
reviews 

• Dispersion of 
ratings 

• Sales growth They find that the variance of ratings and the strength of the most positive 
quartile of reviews play a significant role in determining which new products 
grow fastest in the market-place.  

Table 1: Literatures in Online Consumer Reviews (continued)  
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Author  
 

Year IV  DV Research Findings 

Un, Youn, 
Wu and 
Kuntarapo
rn 

2006 • Innovativeness 
• Individual 

internet usage 
• Music 

involvement 
• Internet Social 

connection  

• Online 
opinion 
leadership 

• Online 
opinion 
seeking 

• Online 
forwarding  

• Online 
chatting  

They find that identified innovativeness, internet usage, and internet social 
connection as significant predictors of online WOM, and online forwarding 
and online chatting as behavioral consequences of online WOM. Music 
involvement is found not to be significantly related to online WOM.  

Hu, Liu 
and Zhang 

2007 • Reviewer quality
• Reviewer 

exposure 
• Product coverage

• Immediate 
sales 

They find that reviewer quality and product coverage are positively related to 
the immediate sales of products; the impact of online review on sales is 
moderated by the information environment of products; the impact of 
reviewer exposure and product coverage on sales is moderated by the 
innovation level of review signal.  

Amblee 
and Bui 

2007 Brand Reputation 
Complementary 
goods reputation  

• Additional 
review 
posted  

• Sales  

They find that not all reviews impacted sales and micro-product with 
high(low) brand and complementary goods reputations are more (less) likely 
to have reviews posted to them in the future. The sales of a digital 
micro-product with a high brand and complementary goods reputation will be 
affected by the addition of a review, while those of a digital micro-product 
with a low brand and complementary goods reputation will be not affected by 
the addition of a review.  

Table 1: Literatures in Online Consumer Reviews (continued)  
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2.3.4. Theory Perspective  

 The success of vital marketing and WOM can best be explained using the 

Diffusion of Innovations Theory, which refers to the dissemination of information, 

abstract ideas, concepts, and practices within a particular group. The dynamics may 

vary in size from a group of close peers, to an organization or company, to even an 

entire cultural or social system (Rogers, 1995; Wejnert, 2002). Among the numerous 

studies, two major models, namely Bass model and Rogers’s model, have received 

consideration attention.  

The Bass Model:  The best-known first-purchase diffusion model of new product 

diffusion in marketing is Bass model (1969). It represents the impact of communication 

efforts about a new product, whether those efforts are external in nature, such as mass 

advertising, or more internal in nature, such as WOM communication or observation 

and imitation. The model assumes that there are differences among customers in terms 

of how innovative they are in their tendencies to adopt new products, and which types 

of information about a new product are most persuasive prior to adoption. When a new 

product is introduced, there exists uncertainty in the minds of potential adopters 

regarding how superior the new product is versus existing alternatives. Individuals 

attempt to reduce this uncertainty by acquiring information about the new product. 

More innovative customers tend to acquire such information via mass media and other 

external outlets. More imitative customers tend to acquire such information from 

interpersonal channels such as WOM communication and observation. The relative 

influence of these two basic types of customers is captured in the Bass model. Bass 

termed the first group “Innovators” and the second group “Imitators”.  

The Bass model thus assumes that new product adopters are influenced by two 
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types of communication: mass media and interpersonal communication. In addition, it 

assumes that the mass media effects, which have a greater impact on innovative 

customers, will be greater at the outset of the product launch, whereas the interpersonal 

communication effects, which have a greater impact on the much larger number of 

imitative customers, will be greater during the later periods of the diffusion process. 

Innovator group is influenced only by the mass-media communication (external 

influence) and the imitator group is influenced only by the WOM communication 

(internal influence). Bass, then, developed the density function of time to adoption and 

cumulative fraction of adopters, and the S-shaped cumulative adoption curve (Figure 2), 

based on the premise: f (t)/ [1-F (t)] =p+qF (t) (p: the coefficients of external influence, 

q: the coefficient of internal influence). Drawing from the Bass’s research, marketers 

use diffusion models to explain the pattern of cumulative adoptions across time. This 

process is generally described in terms of acceptance rates among influential leaders 

and subsequence adopters.  

Figure 2 and Figure 3 are plots of the conceptual and analytical structure 

underlying the Bass model. As noted in Figure 2, the Bass model conceptually assumes 

that “Innovators” or buyers who adopt exclusively because of the mass-media 

communication or the external influence are present at any stage of the diffusion 

process. Imitators as followers are affected only by internal influence, such as WOM 

communication, and the effect of internal influence is greater in the late stage. Figure 3 

shows the analytical structure underlying the Bass model. As depicted, the 

noncumulative adopter distribution peaks at time T*, which is the point of inflection of 

the S-shaped cumulative adoption curve. Furthermore, the adopter distribution assumes 

that an initial pm (a constant) level of adopters buy the product at the beginning of the 

diffusion process. Once initiated, the adoption process is symmetric with respect to 
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time around the peak time T* up to 2T*. That is, the shape of the adoption curve from 

time T* to 2T* is the mirror image of the shape of the adoption curve from the 

beginning of the diffusion process up to time T* (Mahajan et al. 1990).  

   

Figure2: Adoption Due to External and Internal Influences in the Bass Model 

  

The model developed by Bass (1969) assumes that the impact of WOM 

communication on adoption increases with time early in the product’s life cycle and 

decreases with time later on (Figure 2). In his model, each person is either an informer 

or a potential informee. Since the number of informers is constantly growing, their 

impact grows initially. Eventually, due to saturation effects, the number of informees 

gets so small that the impact of the informers necessarily diminishes. There are fewer 

and fewer people to tell. This model has been shown to have some success in predicting 

the growth path of new products based on just a small number of data points and has 

been used to test hypotheses related to the dynamics of innovation diffusion. In other 

words, this model has been shown capable of predicting the growth pattern of a wide 

range of new products with minimal data.  

 

Mass media 

Word of Mouth 
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Figure 3:  Analytical Structural of the Bass Model 

 

Rogers’s Model:  Rogers (1983) has articulated that the adoption curve should have a 

normal distribution because of interpersonal interactions. Using two basic statistical 

parameters of the normal distribution (mean and standard deviation), Rogers has 

proposed an adopter categorization dividing adopters into five categories, namely, 

innovators, early adopters, early majority, late majority, and laggards, with 2.5%, 

13.5%, 34%, 34%, and 16% of the population respectively. Later, Rogers (1995) 

proposed a model describing the five-stage process of decision making for innovation 

adoption, knowledge, persuasion, decision, implementation, confirmation, respectively.  

Rogers (1995, 2003) defines innovation diffusion as a process by which an 

innovation is communicated through certain channels over time among the members of 

a social system. Given this definition, the diffusion process consists of four key 

elements: innovation, communication channels, time, and social system. The element of 

innovation concerned the attributes of the innovation and the characteristics of several 

categories of potential adopters. The element of communication channel is defined as 

“the means by which message get from one individual to another” and emphasized two 

types of communication process: mass media and interpersonal. While mass media 
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communication may have created awareness, interpersonal communication by trusted 

peers tended to influence the actual adoption decision. The element of time is theorized 

as a salient variable in the adoption process. The innovation-decision period, according 

to Rogers, is the duration of time that is needed for the adoption process to occur. The 

element of social system is defined by the presence and activity of related individuals, 

groups or organizations who share a common goal.  

In our study, we focus on the innovators and imitators in Bass model. The 

innovators include innovators and early adopters and, the imitators include early 

majority, late majority, and laggards in Rogers’ model. According to Rogers Model, 

interpretation communication, such as WOM, is one type of communication channels, 

and it is very important for actual new product adoption. Online WOM in form of 

online consumer reviews, as a communication channel, affect innovators and imitators 

to adopt new products with incremental innovation in the electronic consumer forum as 

a social system, where people have the same goal (that is to purchase new products). 

According to Bass Model, in the early stage (introduction stage) of new PLC, the 

innovators are only affected by mass media and, after using new products, they write 

their comments about them. Later, the imitators read the product reviews from 

innovators and make decision to purchase new products or not. Therefore, beyond the 

early stage of PLC, online WOM plays an important role in consumers’ purchasing new 

products.  

Social Network Theory: Social network theory views social relationships in terms 

of nodes and ties. Nodes are the individual actors within the networks, and ties are the 

relationships between the actors. There can be many kinds of ties between the nodes. In 

its simple form, a social network is a map of all of the relevant ties between the nodes 

being studied. The network can also be used to determine the social capital of 
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individual actors. These concepts are often displayed in a social network diagram, 

where nodes are the points and ties are the lines. 

The power of social network theory stems from its difference from traditional 

sociological studies, which focus on the attributes of individual actors, whether they are 

friendly or unfriendly, smart or dumb, etc. Social network theory produces an 

alternative view, where the attributes of individuals are less important than their 

relationships and ties with other actors within the network (Haythornthwaite 1999). 

This approach has turned out to be useful for explaining many real-world phenomena, 

and usually used in the study of WOM (Brown and Reingen 1987; Bansal and Voyer 

2000).  

While there are many reasons to believe that WOM is often important in driving 

consumer actions, it is less clear which aspects of WOM are especially important. 

Existing literature has demonstrated that not all WOM is created equal. WOM’s impact 

depends on who is talking to whom. Granovetter (1973) characterizes relationships as 

being either strong ties or week ties. He assumes that if A and B are connected by a 

strong tie and B and C are connected by a strong tie, then A and C must also be 

connected by a strong tie. We might make the further assumption that communities or 

groups are characterized by relatively strong ties among their members. Then a direct 

implication of this model is that the only connections between communities are those 

made along weak ties. This highlights the critical role played by weak ties in the 

diffusion of WOM: Any piece of information that traverses a weak, as opposed to a 

strong tie, it is likely to reach more people. This has the important implication that 

information moves quickly within communities but slowly across them. In a similar 

vein, the work by Kaplan et al. (1989) in mathematical bioscience shows that different 

patterns of contact between groups with different incidences of HIV/AIDS have 
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different impacts on the spread of the disease. This modeling approach has been 

utilized in the marketing literature by Putsis et al. (1997). They find heterogeneity in 

mixing behavior across 10 nations. Importantly for the present study, they find greater 

interaction within the population of a country than between populations of different 

countries.  

    According to social network theory, the influence of offline WOM is significant in 

affecting the attitude and behavior of such a group (Figure 4). In the offline setting, 

social network just focuses on the individual-to-individual relationship (Brown et al. 

2007). However, the influence of online WOM, which is much higher in both reach and 

frequency without time and location limitations, is greater than that of offline WOM. 

Within online community groups, WOM is expected to affect the attitude and behaviors 

of their members (Brown et al. 2007). E-commerce website can be considered as a 

community or social network with strong ties (e.g., registered members) and weak ties 

(nonmembers and passer-bys) In the online context, the actors appear to be individuals 

who “relate” to Web sites rather than other individuals –only occasionally engaging in 

individual-to-individual contact(Figure 5). 

               

             Figure 4:  Offline WOM through Social Network 
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              Figure 5: Online WOM within online community 

 

Figure 4 and Figure 5 express the online social network conceptualization in 

comparison to offline social information flows. The model in Figure 5 suggests that a 

collective of individuals each contribute and receive information from an online 

community. However, unlike social network in the offline context, once the information 

is posted, the online community becomes the primary unit of relationship rather than 

the individual. Therefore, online WOM is more influential with one-to-many points. 

From the analysis above, we can see the role of online WOM is significant in 

influencing the consumers’ decision-making.  

2.4 Summary  

There are three limitations of previous research. First, although previous studies 

have found that online WOM can influence the product sales, the results of previous 

studies on the explanatory power of measures have been somewhat inconsistent. Some 

scholars think volume of online WOM has impact on new product sales. For example, 

Liu (2006) studied the impact of Yahoo! Movies prerelease message board discussions 

on motion picture box office revenues. Somewhat surprisingly, he finds that, whereas 
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the volume of online conversations has explanatory power, the valence does not. Duan 

et al. (2005) examined the relationship between daily Yahoo! Movies reviews and box 

office sales. They similarly find that the volume, but not the valence, of movie ratings 

has explanatory power. However, other scholars believe the valence, not the volume of 

online WOM has impact on new product sales. For instance, Chevalier and Mayzlin 

(2006) examined the effect of consumer reviews on relative sales of books at 

Amzaon.com and Barnesandnoble.com by providing the summary descriptive statistics 

about valence and volume of online consumer reviews. The results indicated that 

valence of online book reviews has explanatory power on book sales. The result is 

contrary to the former’s opinion. Second, many scholars focus on only one type of 

product, such as books, movies, TV shows or beers. We have little knowledge about the 

differences of the effect of online WOM of different types of products on product sales. 

Third, the effect of valence of online WOM has been investigated recently, but there are 

few papers to investigate the difference between the effect of online positive and that of 

online negative WOM on product sales, especially for new product sales.  
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CHAPTER 3. HYPOTHESIS DEVELOPMENT 

 

 

In this section, applying the Innovation Adoption Theory and Social Network 

Theory and other theories, this study proposes a theoretical framework, and then gives 

a more detailed explanation for each hypothesis.  

3.1 Theoretical Framework 

Reviewing the extant literatures on online WOM, most literature focuses on the 

relationship between online WOM and new product sales, but which attribute of online 

WOM is influential in such relationship is not clear, and more factors affecting this 

relationship are not yet investigated. Extending the prior studies, this study emphasizes 

the impact of online WOM on new product sales by examining the role of product type 

and the role of stage of new PLC. We investigate the effect of different measures of 

online WOM on new product sales, such as volume and valence. We also investigate 

the role of product type and stage of new PLC on new product sales to give greater 

insight into other factors that affect the relationship between online WOM and new 

product sales. Applying social network theory, we point out the important role of online 

WOM on consumer decision making. According to Bass model and Rogers’ model, we 

can further see that the role of online WOM in consumers’ purchasing new products, 

especially in the late stage of new PLC. Since we realize the role of online WOM in 

different stages of new PLC is different, we incorporate the stage of new PLC in our 

theoretical framework as a moderator of relationship between online WOM and new 

product sales. We also add the product type as another moderator of relationship 
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between online WOM and new product sales because the effect of online WOM on new 

product sales is different with respect to different types of new products (Theories are 

explained in the later section). This is shown in Figure6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Figure 6:  Theoretical Framework  

3.2 Hypotheses Development 

    Since E-commerce is developing better and better, many companies promote their 

new products in online stores, such as Amazon.com. As more and more people would 

like to search information online and exchange their information on Internet, Internet 

provides a good platform for consumers to get information about new products and for 

companies to promote their new products. Such phenomenon triggers the interest of 

scholars to investigate the role of online WOM on new product sales.  
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Extant studies have found that the volume of WOM correlates significantly with 

consumer behavior and market outcome (Anderson and Salisbury 2003; Bowman and 

Narayandas 2001; Van den Bulte and Lilien 2001). The reason that the pure volume of 

WOM matters is consumer awareness. For example, Godes and Mayzlin (2004) suggest 

that the more conversation there is about a product, the more likely someone is to be 

informed about it, thus leading to greater sales. On the basis of a similar rationale, 

research that uses diffusion models often examines WOM by either the number of 

adopters (Neelamegham and Chintagunta 1999) or the interaction between the number 

of adopters and that of non-adopters (Zufryden 1996).  

According to the Bass Model, offline WOM can influence new product sales. 

According to Social Network Theory, online WOM is more powerful and more 

reachable than offline WOM. Thus, online WOM can also influence new product sales. 

That’s, more people who are not informed before will know about the product 

information and evaluations from others, and then more people will buy new products 

or not, when the comments are positive or negative, leading to more or less sales of 

new products. Thus, we posit that:  

 

Hypothesis 1: The higher the volume of online consumer reviews, the greater 

impact it has on the new product sales.  

 

Positive WOM typically gives either a direct or an indirect recommendation for 

product purchases. Negative WOM may involve product denigration, rumor, and 

private complaining. The reason valence matters is relatively straightforward; positive 

WOM enhances expected quality (and, thus, consumers’ attitudes toward a product), 

whereas negative WOM reduces it (Liu 2006). Therefore, the positive reviews can be 
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regarded as positive signals of potential gains for consumers to buy a new product, 

while the negative reviews can be regarded as negative signals of potential losses for 

consumers to buy a new product. According to prospect theory (Kahneman and 

Tversky 1979), when consumers make decision under risk (the result of purchase may 

be negative), consumers always compare the potential gains with the potential losses of 

this choice. Since people would like to consult information about new products online 

and trust the information offered by other people, and since positive comments reflect 

the good quality of new products and negative comments reflect the bad quality of new 

products, positive or negative reviews offered by other consumers can influence the 

consumers to make decisions about new products. Thus, the valence of online 

consumer reviews can influence consumers’ decision, and then affect new product sales. 

Thus, we posit that:  

 

Hypothesis 2: The more positive the valence of online consumer reviews, the 

greater positive impact it has on new product sales.  

   

Vivid material is likely to have greater effect on judgment because vividly 

presented material is presumed to be more effectively processed at encoding and, 

therefore, is more likely than nonvivid material to be available when judgment is made 

(Taylor and Thompson 1982). WOM communications as vivid information have a 

greater impact on product judgments than less vivid information (Herr et al. 1991). In 

addition, highly vivid message presentations will enhance the attention paid to a 

communication and thus increase message persuasiveness (Mathews 1994). Therefore, 

WOM are more persuasive than less vivid information. Since the online WOM is more 

influential than offline WOM, online WOM are more persuasive than offline WOM.  
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Similarly, since the valence of online consumer reviews can tell more stories of 

new products to consumers than the volume of online consumer reviews and, it can 

render positive or negative information to online consumers, the valence of online 

consumer reviews is more vivid and more persuasive than the volume of online 

consumer reviews on consumer judgment. Thus, we posit that:  

 

Hypothesis 3: The valence of online consumer reviews has greater impact on new 

product sales than the volume of online consumer reviews.  

 

 Prior studies find that people pay more attention to negative information than 

positive information. Previous research on the impression-information literature 

showed that when comparing negative with positive information, people placed greater 

weight on negative information during product assessment (Fiske 1980; Skowronski 

and Carlston 1989). Research in consumer information search also showed that when 

there is time constraint, people tend to focus more on negative information than 

positive information (Wright 1974) and unfavorable product ratings tended to have a 

greater impact on purchase intention than did favorable product ratings (Weinberger 

and Dillon 1980). Research in other areas of consumer behavior has found strong 

evidence that negative information has more value to the receiver of WOM 

communication than positive information, and therefore that consumers weight 

negative information more heavily than positive information in both judgment and 

decision making tasks (Ahluwalia and Shiv 1997; Feldman 1966; Kanouse and Hanson 

1972; Sknowronski and Carlston 1989; Weinberger et al. 1981).  

A widely accepted explanation for the impact of negative WOM is the so-called 

negativity bias, a psychological tendency for people to give greater diagnostic weight to 
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negative than positive information in making evaluation (Herr et al. 1991). This widely 

observed negativity effect can be explained as a function of the individual’s social 

environment. Because one’s social environment contains a greater number of positive 

than negative cues, negative cues are perceived as counter normative (Feldman 1966; 

Zajonc 1968; Kanouse and Hanson 1972). Therefore, the negative cues appear, tend to 

attract attention and are heavily attributed to the stimulus object more than positive 

cues (Kanouse and Hanson 1972). Similarly, negative information is more diagnostic 

than positive information, because the influence of negative information assigning the 

target to a lower-quality class exceeds that of positive information’s assigning the target 

to a higher-quality class (Ahluwalia and Gurhan-Canli 2000). Therefore, the effect of 

negative information is greater than that of positive information on consumer decision 

making. We believe that such effect also exists in the online environment and we posit 

that:     

 

Hypothesis 4: Online negative consumer reviews have greater impact on new 

product sales than online positive consumer reviews.  

 

Prior research has shown that the product type affects consumers’ use of personal 

information sources and their influence on consumers’ choices (Bearden and Etzel 1982; 

King and Balasubramanian 1994). According to the nature of products, products can be 

classified as search or experience goods, and the search/experience distinction is based 

on the extent to which consumers can evaluate goods or their attributes prior to 

purchase (Nelson 1970). Search goods, such as electronics, are products that consumers 

can evaluate by specific attributes before purchase. Experience goods, such as 

recreational services, primarily vary across consumers and are difficult to describe 



 
 
36

using specific attributes. However, given that information search cost differ across 

channels, a search good or attribute through one channel may be an experience good or 

attribute through another channel. For example, the smell of flowers can be assessed 

prior to purchase in a bricks-and-mortar, but not in an online, florist shop. Consequently, 

using this paradigm in channel-related research (e.g. in an effort to match goods to 

cannels) can present problems. Weathers et al. (2007) base their classification on the 

extent to which consumers feel they need to directly experience goods to evaluate 

quality. The greater the need to use one’s senses to evaluate a good, the more 

experience qualities the good possess. The more one feels that second-hand information 

will allow for adequate evaluation of the good, the more search qualities the good 

possesses.  

Since experience products are typically evaluated by affective evaluative cues (i.e., 

the aesthetic aspects of the product) while search goods are usually evaluated by 

instrumental evaluative cues (i.e., the more technical aspects or performance aspects of 

a product) (Ben-Sira 1980), consumers may rely more on product reviews for 

experience products than for search products. In support of this view, King and 

Balasubramanian (1994) found that consumers assessing a search product are more 

likely to use own-based decision-making processes than consumers assessing an 

experience product are, and that consumers evaluating an experience product rely more 

on other-based and hybrid decision-making processes than consumers assessing a 

search product do. Thus, we posit that:  

 

Hypothesis 5a: The volume of online consumer reviews has greater impact on new 

experience product sales than new search product sales. 
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Hypothesis 5b: The valence of online consumer reviews has greater impact on new 

experience product sales than new search product sales. 

 

Bass Model implies that, in the early stage (the introduction stage) of PLC, 

consumers to adopt the new products are innovators who are only affected by the 

external influence, such as mass media, so that the effect of mass media domains the 

adoption of new products in the early stage. Also, it implies that, in the late stage of 

PLC, the adoption of new products is increased due to the increasing number of 

imitators who are only affected by internal influence, such as offline WOM so that 

offline WOM plays a important role in new product adoption in the late stage. In other 

words, the external influence affects new product adoption more in the early stage of 

PLC, while the internal influence affects new product sales more in the late stage of 

PLC. Because Social Network Theory shows that online WOM is more influential than 

offline WOM, the role of online WOM on new product sales is greater than that of 

offline WOM. Therefore, online WOM also has the effect of offline WOM in the Bass 

model. That is, in the early stage of PLC, the mass media affects the innovators to buy 

new products, while, in the late stage of PLC, the online WOM affects the imitators to 

buy new products.  

In our case, the innovators who have used or bought the new products write 

comments about the new products online, and later, imitators read these online 

consumer reviews and make decision to buy the new products or not. In the early stage 

of PLC, the new product sales are influenced mainly by mass media from companies, 

while in the late stage of PLC, the new product sales are influences mainly by online 

consumer reviews. Although the context in our study differs from that studied 

originally by Bass in that it is a repeat purchase product with a relatively low sampling 
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cost, we still expect this theory can be applied in our context. Thus, we posit that:  

 

Hypothesis 6: The effect of volume of online consumer reviews on the new product 

sales is greater in the late stage of new product life cycle than in the early stage of 

new product life cycle.  
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CHAPTER 4. RESEARCH METHODOLOGY 

 
 
 
 

The purpose of this chapter is to detail the techniques used for collecting the data, 

which was used ultimately for testing the hypotheses related to proposed model in 

Chapter 3. This chapter also includes the statistical methods that were used to test these 

hypotheses.  

4.1 Data Collection 

We tracked the online consumer reviews in terms of volume and valence of 

reviews, sales rank data and related information of a few selected new products on a 

weekly basis since they are released on Amazon.com for 9 months, from August 2007 

to April 2008. 

4.1.1 Website Selection  

The WOM data are collected from Amazon.com Inc (www.amazon.com). There are 

several reasons that Amazon serves as a good source of WOM of new products. First, it 

is one of the most popular online shopping websites and it has been well-known for its 

extensive customer review system. Second, it requires no access fee for either browsing 

or posting a message. This helps reduce any possible bias in the demographic 

composition of the Web site’s visitors. Third, the structure of the Web site is well 

designed so that finding and collecting information is straightforward, thus reducing 

possible errors during data collection. Fourth, WOM messages are archived and 

indexed numerically by the dates when they are posted. Thus, it is possible to track the 
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period to which a particular message belongs. Finally, it is convenient for us to collect 

product sales data by finding out the sales ranking of each product on this website.      

4.1.2 Product Selection  

Products are classified into two groups, that is, search product category and 

experience product category. In our study, we chose Electronics as search product 

category, and Video Games as experience product category. There are two reasons to 

select these products. First, in the Amazon.com, these products have many online 

consumer reviews so it is easy for us to collect related information. Second, these 

products are always used as search or experience products in papers related with 

product type so it is useful for us to investigate the role of product type (Weathers et.al 

2007; Moon et al. 2008).  

4.1.3 Variables  

The variables include dependent variables, independent variables, moderating 

factors and control variables. Dependent variable is new product sales rank. 

Independent variables are volume and valence of online consumer reviews. Moderating 

factors include product type and stage of PLC. Control variables are product category, 

product subcategory, list price, promotion, other stores to provide such products, and 

shipping availability.  

4.2 Operationalization and Measures  

Online Consumer Review:  Based on Chevalier and Mayzlin (2006), we used the 

number of reviews to measure the volume of online consumer reviews. Based on 

Clemons et al. (2006) and Dellarocas et al. (2007), we used the average ratings, i.e., 



 
 
41

average number of stars the reviewers assigned (on a scale of one to five stars, with five 

stars being the best) to capture the valence of online consumer reviews.  

New Products:  There are two kinds of innovation to produce new products, 

including incremental innovation and radical innovation. Incremental innovation is a 

step forward along a technology trajectory, or from the known to the unknown, with 

little uncertainty about outcomes and success and is generally minor improvements 

made by those working day to day with existing methods and technology (both process 

and product), responding to short term goals. Most innovations are incremental 

innovations. Radical innovation is launching an entirely novel product or service rather 

than providing improved products and services along the same lines as current ones. 

The uncertainty of radical innovations means that seldom do companies achieve their 

breakthrough goals this way, but those times that breakthrough innovation does work, 

the rewards can be tremendous. Radical innovation involves larger leaps of 

understanding, perhaps demanding a new way of seeing the whole problem, probably 

taking a much larger risk than most people are willing to take. There is often 

considerable uncertainty about future outcomes. There may be considerable opposition 

to the proposal and questions about the ethics, practicality or cost of the proposal may 

be raised. Radical innovation involves considerable change in basic technologies and 

methods, created by those working outside the mainstream industry and outside the 

existing paradigms. Because most of new products are ones with incremental 

innovations, we used new products with incremental innovations in our study. We 

define the products newly released on Amazon.com as new products.  

New Product Sales:  Amazon.com does not provide the actual sales numbers for its 

products. Instead, we use the Sales Rank of the products selected within Amazon.com 

as a proxy of actual sales. The sales rank is inversely related to sales. That means the 
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top-selling product at that site has a sales rank of one, and the lower sellers are assigned 

higher sequential ranks. According to Chevalier and Goolsbee (2003), the relationship 

between the sales rank and the actual volume of book sales on Amazon can be 

approximately describe by:  ln [Sales] =β0-β1*ln [SalesRank]. Schnapp and Allwine 

(2001) and Rosenthal (2005) also find that the relationship between ln (sales) and ln 

(ranks) is approximately linear. This finding suggests that in lieu of sales data, log rank 

is the appropriate dependent variable. Because sales rank is a log linear function of 

sales with a negative slope, we used –Log [SalesRank] as the dependent variable.  

Moderating Factors: For stage of PLC, in the cross-sectional analysis, we used 0 for 

early stage of PLC and 1 for late stage of PLC, but in the panel data analysis, we used 

ageweek to measure the stage. Ageweek is not calendar week, but actual week since 

new product is released. For product type, we used 0 for search product category and 1 

for experience product category.  

Control Variables:  We included the product subcategories to control for the product 

subcategory variations. For example, for search products, subcategories are electronics 

accessories, cameras, Televisions, MP3 players, computers, office electronics, GPS, 

equalizer and optics; for experience products, subcategories are playstations3, Xbox360, 

Nintendo Will, Playstation2, Xbox, GameCube, Mac Games, Sony PSP, Nintendo DS, 

Game Boy Advance. We used list price to control price variation between different 

products. We used price promotion to control the effect of promotion on product sales. 

Sometimes, Amozon.com provides other stores to offer the same new products. So we 

also use 0 for having such information, and 1 for not. Shipping availability is also one 

of important factors to affect consumers’ online shopping. We used dummy variable to 

control this factor, coding as 1 for having free shipping and 0 for not (Table 2). 
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Table 2: Measures of All the Variables  

 

4.3 Pretest  

4.3.1 Pretest for Product Type  

In the pretest, we used 9 types of electronics, including electronics accessories, 

cameras, Televisions, MP3 players, computers, office electronics, GPS, equalizer and 

optics, and 11 types of video games, including playstations3, Xbox360, Nintendo Wii, 

Playstation2, Xbox, GameCube, Mac Games, Sony PSP, Nintendo DS, Game Boy 

Advance. First, 47 undergraduate students at a large University in Hong Kong 

participated in a pretest, which was conducted to identify both product stimuli for 

search and experience products. Second, The subjects were provided with 9 types of 

Dependent Variable  Measurement  
New product sales  -Log(SalesRank from Amazon.com)  
Independent Variable  Measurement  
Volume of Review  The total number of reviews 
Valence of Review The average rating of reviews 
Moderating factor  Measurement  
Stage of PLC Dummy variable for stage of PLC: 0 for early 

stage; 1 for late stage. Or Ageweek of each product. 
Product type Dummy variable for product type: 0 for search 

product category; 1 for experience product 
category.  

Control Variable Measurement 
Product subcategory  Nine dummy variables for search product; eleven 

dummy variables for experience product. 
List price  The product price before discount 
Promotion  Percentage of price reduction of list price 
Other stores  Dummy variable for other stores to provide the 

same products: 1 for Yes; 0 for No. 
Shipping availability  Dummy variable for shipping availability: 1 for 

Yes; 0 for No.  
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electronics and 11 types of video games, and were presented with five seven-point 

Likert items for each product, with 1=”Absolutely Disagree” and 7=”Absolutely 

Agree”, three items used to assess experience qualities and two items used to assess 

search qualities (Weathers el at. 2007). Third, responses to the items were averaged to 

create measures of experience and search qualities for each product, and the difference 

between these measures was computed (i.e., experience-search). The absolute value of 

the average of the differences of electronics was less than that of video games, and 

these average means differed significantly (electronics= -.2.176, video= 5.181; 

p<0.001). Thus, the two products can adequately represent search and experience 

products respectively.  

4.3.2 Pretest for Reviews  

Chevaliber and Mayzlin (2006) found that consumers actually read and respond to 

written reviews, not merely the average star rating summary statistic provided by the 

Web sites. Therefore, we checked the valence consistency of reviews in form of rating 

and text. We randomly selected 50 new search products and 50 new experience 

products. There are 445 reviews for search products and 478 reviews for experience 

products. According to Liu (2006), we selected three judges and they independently 

read each of the messages and assigned them to one of five categories: one star, two 

stars, three stars, four stars, five stars, according to the definition of Amazon rating 

system (Table3). From the definition, the messages classified as four stars and five stars 

are positive, either showing clear positive assessment of the new products or provide 

direct positive recommendations. The messages classified as one star and two stars are 

negative, either showing clear negative assessment of the new products or provide 

direct negative recommendations. The messages classified as three stars are neutral if 
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they talk about the new products but not provide any positive or negative comments. 

The three independent codings are integrated using the majority rule: If at least two 

judges assign the same category, that category is used for the message. If all three 

judges disagree, the message is coded as disagreement. Finally, we compared the 

ratings assigned by the three judges with that assigned by reviewer to check the valence 

consistency of reviews in form of rating and text. The result is the valence of 98% of 

text reviews is consistent with that of ratings. Therefore, we used product ratings to 

measure the valence of online consumer reviews.  

 

                     Table 3: Amazon Rating System  
 

Number of stars  The meaning of stars  
1 star I hate it 
2 stars I don't like it 
3 stars It's OK 
4 stars I like it 
5 stars I love it 
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CHAPTER 5. RESULTS 

 

 

In this chapter, the results of the hypotheses testing analyzed by using the 

methodology stated in Chapter 4 are reported. This chapter starts with the descriptive 

statistics of data collected. Next, the general steps which comprised performing 

hierarchical regression analysis for each hypothesis in cross-sectional analysis and 

panel data analysis are also described.  

5.1 Descriptive Analysis 

In total, we collected 417 new products for nine months, 165 search products and 

252 experience products. Because some of products are not sold and some of products 

have missing information during the period, we exclude these kinds of products. The 

final sample contains 332 new products, 131 search products and 201 experience 

products. The rate of useful information is 79.6% for all the products, 79.4% for search 

products and 79.8% for experience products.  

Table 4 provides some key summary statistics about the key variables in our 

sample. We summarized the minimum, maximum, mean and standard deviation values 

of all the variables. Sales ranking for experience products ranges from 131316 to 12, 

while sales ranking for search products ranges from 378314 to 2. The maximum 

volume of positive reviews (274) and negative reviews (38) for experience products is 

smaller than that of positive reviews (543) and negative reviews (63) for search 

products, and the maximum volume of positive reviews is greater than that of negative 

reviews in both types of products. The mean of average aggregate ratings for 
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experience products (3.15) is greater than that for search products (1.85). Standard 

Deviation of volume of reviews in experience products(34.49) is greater than that in 

search products(32.46).  

 

Table 4: Key Summary Statistics  

Variables (experience products) MIN MEAN MAX SD 

Sales Ranking (aggregate) 131316 4705.53 12 7003.11

Volume of total reviews  1 24.62 279 34.49 

Volume of positive reviews  1 19.16 274 29.89 

Volume of negative reviews  1 2.82 38 4.26 

Percentage of positive reviews 0 14.7% 100% 21.6% 

Percentage of negative reviews  0 57.2% 100% 38.6% 

Average aggregate rating(rang 1-5) 1 3.15 5 1.79 

Variables (search products)  MIN MEAN MAX SD 

Sales Ranking (aggregate) 378314 45245.4 2 64852.73

Volume of total reviews  1 12.79 641 32.46 

Volume of positive reviews  1 10.44 543 27.49 

Volume of negative reviews  1 1.5 63 3.54 

Percentage of positive reviews 0 13.4% 100% 35% 

Percentage of negative reviews  0 55.2% 100% 20.4% 

Average aggregate rating(rang 1-5) 1 1.85 5 1.81 

 

5.2 Cross-sectional Analysis 

5.2.1 Data Description 

We conducted a cross-sectional analysis using data in the last week of February in 

2008. For the cross-sectional data, there are 319 new products including 201 new 

experience products and 118 new search products. Table 5 summarizes the basic 

information about cross-sectional data. Sales ranking for experience products ranges 
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from 131316 to 20, while sales ranking for search products ranges from 378314 to 2. 

The maximum volume of positive reviews (274) and negative reviews (35) for 

experience products is smaller than that of positive reviews (543) and negative reviews 

(63) for search products, and the maximum volume of positive reviews is greater than 

that of negative reviews in both types of products. The mean of average aggregate 

ratings for experience products (3.15) is greater than that for search products (1.86). 

Standard Deviation of volume of reviews in experience products (46.04) is less than 

that in search products (60.17).  

 

 Table 5: Descriptive Statistics of Cross-Sectional Data  

Variables (experience products) MIN MEAN MAX SD 

Sales Ranking (aggregate) 131316 4705.53 20 12831.848

Volume of total reviews  1 24.62 279 46.04 

Volume of positive reviews  1 19.16 274 40.05 

Volume of negative reviews  1 2.82 35 5.18 

Percentage of positive reviews 0 14.7% 100% 22.9% 

Percentage of negative reviews  0 57.2% 100% 35.3% 

Average aggregate rating(rang 1-5) 1 3.15 5 1.62 

Variables (search products)  MIN MEAN MAX SD 

Sales Ranking (aggregate) 378314 45628 2 6451.25 

Volume of total reviews  1 12.9 641 60.17 

Volume of positive reviews  1 10.53 543 51.07 

Volume of negative reviews  1 1.51 63 6.18 

Percentage of positive reviews 0 33% 100% 21.8% 

Percentage of negative reviews  0 7.3% 100% 32.5% 

Average aggregate rating(rang 1-5) 1 1.86 5 2.08 
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5.2.2 Cross-sectional Analysis 

We calculated the correlation coefficients for all the variables in our study to check the interrelationships between the variables. Table 6 

shows the correlations between the variables. The interrelationship between the variables is less than 0.6. The cutoff of interrelationship is 

commonly used as 0.85. Therefore, the variables do not measure the same thing.  

Table 6: Correlation Matrix for All the Variables in Cross- sectional Analysis 

 SR VA VO  NP PP SH PR OS PRO 

Sales Ranking(SR) 1 0.655** 0.453** 0.459** 0.247** 0.474** 0.104 -0.263** 0.151**

Valence(VA)  1 0.304** 0.678** 0.338** 0.403** 0.065 -0.172** 0.060 

Volume (VO)   1 0.241** 0.078 0.225** -0.033 -0.097 0.043 

Negative 

Percentage (NP) 

    

1 
-0.299** 0.468** -0.291** -0.165** 0.029 

Positive Percentage

(PP) 

     

1 
0.026 0.398** -0.052 0.062 

Shipping(SH)      1 -0.288** -0.317** 0.014 

Price(PR)       1 -0.024 -0.002 

Other Store (OS)        1 0.009 

Promotion(PRO)         1 

** Correlation is significant at the 0.01 level (2-tailed).
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Since we have several groups of variables as predictors, including both main effects 

and interactions, we adopt hierarchical regressions to test the hypotheses. First, in order 

to get the better result, we calculated the Z score for volume. Then, we ran a 

hierarchical regression analysis for hypothesis 1 regarding the effect of volume of 

online consumer reviews on new overall product sales. At step one, we regressed the 

dependent variable on all covariates (shipping, price, promotion, other stores and 

product type). At step two, we regressed the dependent variable on all the covariates 

and the volume of online consumer reviews. Table 7 shows that this regression model 

is significant (adjusted R-Square=0.672, F =69.429, P< 0.001), and coefficient of 

volume of online consumer reviews is positive (Standardized Beta = 0.358, P<0.001). 

Thus, hypothesis 1 is supported. 

 

Table 7: Hierarchical Regression Analyses for the Effect of Volume of Overall Data  

Dependent Variable New Product Sales 
Model Fitness Model 1 Model 2 
R-Square 0.331 0.452 
Adjusted R-Square 0.320 0.441 
F Value 31.226 69.429 
Sig.F Change 0.000 0.000 
Shipping 0.402*** 0.299*** 
Price 0.304*** 0.303*** 
Promotion 0.137** 0.121** 
Other Store(OS) -0.091^ -0.082^ 
Product Type 0.183** 0.218*** 
Volume  0.358*** 

Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 
 

 

 In order to get the better result, we first calculated the Z score for valence. Then, we 

ran a hierarchical regression analysis for hypothesis 2 regarding the effect of valence of 

online consumer reviews on new overall product sales. At step one, we regressed the 

dependent variable on all covariates (shipping, price, promotion, other stores and 
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product type). At step two, we regressed the dependent variable on all the covariates 

and the valence of online consumer reviews. Table 8 shows that this regression model 

is significant (adjusted R-Square=0.526, F =129.676, P< 0.001), and coefficient of 

valence of online consumer reviews is positive (Standardized Beta = 0.501, P<0.001). 

Thus, hypothesis 2 is supported. 

 
Table 8: Hierarchical Regression Analyses for the Effect of Valence of Overall Data  
 

Dependent Variable New Product Sales 
Model Fitness Model 1 Model 2 
R-Square 0.331 0.526 
Adjusted R-Square 0.320 0.517 
F Value 31.226 129.676 
Sig.F Change 0.000 0.000 
Shipping 0.402*** 0.243*** 
Price 0.304*** 0.175*** 
Promotion 0.137** 0.115** 
Other Store(OS) -0.091^ -0.081* 
Product Type 0.183** 0.073 
Valence  0.501*** 

Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 
 

In order to get the better result, we first calculated the Z score for valence and 

volume. Then, we ran a hierarchical regression analysis for hypothesis 3 regarding the 

effect of valence of online consumer reviews versus that of volume of online consumer 

reviews on new overall product sales. At step one, we regressed the dependent variable 

on all covariates (shipping, price, promotion, other stores and product type). At step 

two, we regressed the dependent variable on all the covariates, the valence of online 

consumer reviews and volume of online consumer reviews. Table 9 shows that this 

regression model is significant (adjusted R-Square=0.586, F =96.866, P< 0.001). The 

coefficient of valence of online consumer reviews is 0.429 (P<0.001), while the 

coefficient of volume of online consumer reviews is 0.261 (P<0.001). The coefficient 

of valence of online consumer reviews is greater than that of volume of online 
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consumer reviews. That means the effect of valence of online consumer reviews is 

greater than that of volume of online consumer reviews on new product sales. Thus, 

hypothesis 3 is supported. 

 

Table 9: Hierarchical Regression Analyses for the Effect of Volume and Valence of Overall 
Data  

Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 
 

According to previous studies (Basuroy et al. 2003; Eliashberg and Shugan 1997), 

we used the percentage of positive messages and the percentage of negative messages 

measure the valence of online consumer reviews. In order to get the better result, we 

first calculated the Z score for percentage of positive reviews and percentage of 

negative reviews. Then we ran a hierarchical regression analysis for hypothesis 4 

regarding the effect of online negative consumer reviews versus that of online positive 

consumer reviews on new overall product sales. At step one, we regressed the 

dependent variable on all covariates (shipping, price, promotion, other stores and 

product type). At step two, we regressed the dependent variable on all the covariates, 

percentage of online positive consumer reviews and percentage of online negative 

consumer reviews. Table 10 shows that this regression model is significant (adjusted 

R-Square=0.565, F =96.750, P< 0.001). The coefficient of percentage of online 

Dependent Variable New Product Sales 
Model Fitness Model 1 Model 2 
R-Square 0.331 0.586 
Adjusted R-Square 0.320 0.577 
F Value 31.226 96.866 
Sig.F Change 0.000 0.000 
Shipping 0.402*** 0.191*** 
Price 0.304*** 0.193*** 
Promotion 0.137** 0.106** 
Other Store(OS) -0.091^ -0.076^ 
Product Type 0.183** 0.115* 
Valence  0.429*** 
Volume  0.261*** 
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negative consumer reviews is 0.445 (P<0.001), while the coefficient of percentage of 

online positive consumer reviews is 0.303 (P<0.001). That means the effect of online 

negative consumer reviews is greater than that of online positive consumer reviews on 

new product sales. In another way, we calculated the rate of the number of online 

positive consumer reviews and the number of online negative consumer reviews for 

each product. That rate of the number of online positive WOM greater than the number 

of online negative WOM accounts for 98.1%. That means, even though online positive 

WOM is more than online negative WOM, the effect of online negative WOM is 

greater than that of online positive WOM. Thus, hypothesis 4 is supported. However, 

there is a problem that the coefficient of the percentage of online negative reviews is 

positive, which is not as we expected before. We conducted multicollinearity tests show 

that there is no collinearity or suppression problem, because VIF of all the variables is 

less than 10. The same problem also exists in the paper of Liu (2006).  

 

Table 10: Hierarchical Regression Analyses for the Effect of Positive and Negative of 
Overall Data  

Dependent Variable New Product Sales 
Model Fitness Model 1 Model 2 VIF 
R-Square 0.331 0.474  
Adjusted R-Square 0.320 0.462  
F Value 31.226 42.709  
Sig.F Change 0.000 0.000  
Shipping 0.402***   0.264*** 2.360 
Price 0.304***   0.214***  1.455 
Promotion 0.137**   0.116** 1.014 
Other Store(OS) -0.091^ -0.079^ 1.133 
Product Type 0.183** 0.046 3.040 
Negative Percentage  0.439*** 1.725 
Positive Percentage  0.287*** 1.409 

Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 

 

In order to get the better result, we first calculated the Z score for volume and 

valence. Before testing hypothesis 5, we compared the differences of new product sales 
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between new search products and new experience products. The difference emerges in 

our data with the effect of online WOM has greater effect on new experience product 

sales than on new search product sales. The differences between search products and 

experience products on new product sales are reported in Table 11. The role of product 

type was further analyzed using regression analysis and will be reported subsequently 

in this section.  

 

Table 11: Role of Product Type: Differences in New Product Sales 

product Mean SD T-statistic Prob>|T| 
Search -4.209 1.057 3308.54 0.0000 
Experience -2.973 0.792   

 

Next, we tested the hypothesis 5 regarding the effect of the volume and valence of 

online consumer reviews on search product sales versus experience product sales. First, 

we ran a hierarchical regression analysis regarding the effect of the volume and valence 

of online consumer reviews of all the products on new product sales. At step one, we 

regressed the dependent variable on all covariates (shipping, price, promotion, other 

stores and product type). At step two, we regressed the dependent variable on all the 

covariates, the valence of online consumer reviews and volume of online consumer 

reviews. Table 9 shows that this regression model is significant (adjusted 

R-Square=0.586, F =96.866, P< 0.001). The coefficient of valence of online consumer 

reviews is 0.429 (P<0.001), while the coefficient of volume of online consumer reviews 

is 0.261 (P<0.001) 

Second, we ran a hierarchical regression analysis regarding the effect of the 

volume and valence of online consumer reviews of search products and those of 

experience products on new product sales respectively. At step one, we regressed the 

dependent variable on all covariates (shipping, price, promotion, other stores and 
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product subcategory). At step two, we regressed the dependent variable on all the 

covariates, the valence of online consumer reviews and volume of online consumer 

reviews. Table 12 reflects the result of regression on new product sales of search 

products and experience products. The predictive validity of the model as indicated by 

Adjusted R-Square is higher for experience products (0.599) compared to search 

products (0.590). The regression models are significant (P<0.001). The role of volume 

and valence of online consumer reviews comes out strong in both groups (For search 

products, Standardized Beta for volume=0.112, Standardized Beta for valence=0.391; 

for experience products, Standardized Beta for volume=0.401, Standardized Beta for 

valence=0.546). The regression coefficient is significant in both cases (P<0.001).  

 

Table 12: Role of Product Type: Regression Analysis 

 
Variable  

Standardized 
Coefficient 

Standard 
Error 

T for H0: 
Parameter=0 

Prob 
>|T| 

Product Type = Search (Adjusted R-Square = 0.590) 
Valence 0.391 0.095 5.118 0.000 
Volume 0.112 0.076 1.820 0.000 
Product Type = Experience (Adjusted R-Square = 0.599) 
Valence 0.546 0.039 10.054 0.000 
Volume 0.401 0.035 8.068 0.000 
 

Then we used Chow test (Chow, 1960) to compare the regression models by 

product type with the general model. The Chow test is the most popular way of testing 

whether or not the parameter values associated with one data set are the same as those 

associated with another data set. The equation for the Chow test follows:  

 

      F=                   (1) 
 

where k=number of parameters in the regression equation. 

Here, an F –statistic is computed from the equation above. Two separate 

regressions allow the parameters to differ between the two populations. Sc is the sum of 
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the squared residuals from the regression using the entire sample. S1 and S2 are the 

sum of squared residuals from regressions using each individual regime. N1 is the total 

number of observations in the sample1, and N2 is the total number of observations in 

the sample2. Therefore, to check whether the differences between the coefficients 

obtained for the different regressions reached significant levels, a Chow test was 

performed. The sum of square errors for each of the regressions was obtained from the 

analysis of variance data given in the Table 13. Chow test statistic was calculated to be 

37.46. This is found to be significant at the 0.05 level. Therefore, there is statistical 

evidence of product type influencing the relationship between the variables in the 

model. Finally, we checked the coefficients of related variables in the model. The 

coefficient of volume of experience products (0.401) is greater than that of search 

products (0.112). The coefficient of valence of experience products (0.546) is greater 

than that of experience products (0.391). Thus, hypothesis 5a and hypothesis 5b are 

supported. 

Table 13: The Role of Product Type: Analysis of Variance  

 

In order to get the better result, we first calculated the Z score for valence and 

volume. Then, hierarchical regression analysis was conducted for hypothesis 6 regarding 

the effect of the volume of online consumer reviews on new product sales for two types 

of products over time. Since the PLC of new experience products is different from that 

 
Source  

 
d.f. 

Sum of 
Squares 

F Prob 
>|T| 

General model  
Model  2 189.218 63.514 0.000 
Error  317 133.637   
Product Type = Search 
Model  2 121.776 13.899 0.000 
Error  115 59.576   
Product Type= Experience 
Model  2 63.606 19.267 0.000 
Error  198 38.585   
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of new search products, we conducted cross-sectional analysis for experience product 

data and for search product data separately. First, we need to determine the cutoff point 

of stage of PLC, and coded “week” as 0 for early stage and 1 for late stage. After trial 

and error, we found out the cutoff point of stage of PLC is the 14th week for search 

products, while the cutoff point of stage of PLC is the 12th week for experience 

products.  

Then, we ran a hierarchical regression analysis for search products. Table 14 

shows the results of regression analysis for the search products. In the first step, we 

regressed the dependent variable on all covariates (shipping, price, promotion, other 

stores and product subcategory).In the second step, we regressed the dependent variable 

on all the covariates, and volume of online consumer reviews. In the third step, we 

regressed the dependent variables on all covariates, volume of online consumer reviews, 

valence of online consumer reviews and week. In the fourth step, we regressed the 

dependent variables on all covariates, volume of online consumer reviews, valence of 

online consumer reviews, week and interaction between volume and valence. In the last 

step, we regressed the dependent variables on all covariates, volume of online 

consumer reviews, week, the interaction between volume and valence and the 

interaction between week and volume of online consumer reviews. The high adjusted 

R-Square (0.679) implies that fit of the regression model is very good. The interaction 

between week and volume of search products (Standardized Beta= -0.119, P<0.05) is 

significant and the coefficient is negative, which means when the week is equal to 0, 

the coefficient of this interaction is more than the coefficient of this interaction when 

the week is equal to 1. In other words, the effect of the volume of online consumer 

reviews on new product sales in the early stage of PLC is more than that in the late 

stage of PLC. The result is not as what we expected. The interaction between volume 
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and valence (Standardized Beta= -0.613, P<0.001) is significant and the coefficient is 

negative, which means the more positive reviews can lead to fewer new product sales 

and verse visa. The result is also opposite to our expectation. 

In the same way, we ran hierarchical regression analysis for experience products. 

Table 14 shows the results of regression analysis for experience products. The high 

adjusted R-Square (0.623) implies that fit of the regression model is very good. The 

interaction between week and volume of experience products (Standardized Beta= 

-0.358, P<0.01) is significant and the coefficient is negative, which means when the 

week is equal to 0, the coefficient of this interaction is more than the coefficient of this 

interaction when the week is equal to 1. In other words, the effect of the volume of 

online consumer reviews on new product sales in the early stage of PLC is more than 

that in the late stage of PLC. The result is not as what we expected. The interaction 

between volume and valence (Standardized Beta= -0.551, P<0.05) is significant and the 

coefficient is negative, which means the more positive reviews can lead to fewer new 

product sales and verse visa. The result is also opposite to our expectation.  

Because the results are contradicted to our expectation, we conducted the 

multicollinearity test before we made a conclusion for this hypothesis. The results in 

Table 14 and Table 15 show that there is serious multicollinearity among several terms 

(VIF >10). Therefore, we used standardized scores to correct the multicollinearity 

problem. After running ridge regression, all the variables of VIF are smaller than 10 

and most of them range from 1 to 2, which indicate that the correction procedure is 

effect. Since we used one-week data to analyze our hypothesis, meaning our sample 

size is not very large, we reported the results with significant level lower than 0.1 (Luo, 

1998).  

Table 17 shows the results of ridge regression analysis for search products. The 
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high adjusted R-Square (0.537) implies that fit of the regression model is very good. 

The interaction between week and volume of search products (Standardized 

Beta=0.190, P<0.001) is significant and the coefficient is positive, which means when 

the week is equal to 0, the coefficient of this interaction is less than the coefficient of 

this interaction when the week is equal to 1. In other words, the effect of the volume of 

online consumer reviews on new product sales in the early stage of PLC is less than 

that in the late stage of PLC. The interaction between volume and valence is 

significant(P<0.05) and positive for search products(0.057), which means the more 

positive reviews can lead to greater effect on new product sales, and the fewer positive 

reviews can lead to less effect on new product sales; and verse visa. Table 16 shows the 

results of ridge regression analysis for experience products. The high adjusted R-Square 

(0.643) implies that fit of the regression model is very good. The interaction between 

volume and valence is significant(P<0.05) and positive for experience products(0.132), 

which means the more positive reviews can lead to greater effect on new product sales, 

and the fewer positive reviews can lead to less effect on new product sales; and verse 

visa. The interaction between week and volume of search products (Standardized 

Beta=0.141, P<0.05) is significant and the coefficient is positive, which means when 

the week is equal to 0, the coefficient of this interaction is less than the coefficient of 

this interaction when the week is equal to 1. In other words, the effect of the volume of 

online consumer reviews on new product sales in the early stage of PLC is less than 

that in the late stage of PLC. Thus, H6 is supported.
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Table 14: Hierarchical Regression Analyses for the Effect of Volume of Search Products 
 

Dependent Variable New Product Sales    
Model Fitness Model 1 Model 2 Model 3 Model 4 Model 5 VIF 
R-Square 0.569 0.671 0.722 0.722 0.729  
Adjusted R-Square 0.515 0.623 0.678 0.675 0.679  
F Value 9.099 4.256 20.984 0.032 19.012  
Sig.F Change 0.000 0.000 0.000 0.874 0.000  
Shipping 0.515*** 0.274*** 0.252*** 0.255*** 0.229** 1.881 
Price 0.275*** 0.164* 0.157* 0.157* 0.155* 1.391 
Promotion 0.208** 0.182** 0.159** 0.158** 0.152** 1.368 
Other Store(OS) -0.113 -0.192 -0.115^ -0.115^ -0.118^ 6.877 
SubC1 -0.213 -0.198 0.159 -0.214 -0.210 1.155 
SubC2 -0.081 -0.078 -0.215 -0.168 -0.162 9.142 
SubC3 -0.124 -0.188 -0.169 -0.257 -0.250 10.265 
SubC4 -0.138 -0.147 -0.257 -0.191 -0.195^ 4.848 
SubC5  -0.099 -0.134 -0.191 -0.202  -0.222 19.781 
SubC6  -0.037 -0.049 -0.204 -0.138  -0.143 20.942 
SubC7  -0.076 -0.054 -0.138 -0.049  -0.044 2.992 
SubC8  -0.106 -0.150 -0.049* -0.188*  -0.186* 2.699 
SubC9  -0.101 -0.138 -0.188^ -0.142  -0.137 2.664 
Volume   0.112^ -0.142  -0.067  -0.546 340.690 
Valence  0.391*** 0.079***  0.391*   0.435* 11.415 
Week    0.366*** -0.247***   -0.209** 1.506 
Interaction between volume and valence    0.142    -0.613*** 320.656 
Interaction between week and volume     -0.119* 2.260 
Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 

Table 15: Hierarchical Regression Analyses for the Effect of Volume of Experience Products 
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Dependent Variable New Product Sales    
Model Fitness Model 1 Model 2 Model 3 Model 4 Model 5 VIF 
R-Square 0.165 0.622 0.630 0.643 0.658  
Adjusted R-Square 0.104 0.590 0.596 0.608 0.623  
F Value 2.674 113.192 3.603 6.762 8.232  
Sig.F Change 0.001 0.000 0.059 0.010 0.005  
Shipping 0.052 0.085^ 0.096^ 0.091^ 0.090^ 1.291 
Price 0.251*** 0.087 0.085 -0.058 -0.075 1.510 
Promotion 0.117^ 0.032 0.029 0.018 0.004 1.389 
Other Store(OS) -0.082 -0.070 -0.065 -0.062 -0062 1.097 
SubC1 -0.143^ -0.090^ -0.107* -0.116* -0.125* 1.406 
SubC2 -0.194* -0.065 -0.087 -0.098^ -0.115* 1.704 
SubC3 -0.0560 0.016 0.009 0.012 -0.010 1.498 
SubC4 -0.091 -0.010 -0.007 0.011 -0.003 1.141 
SubC5 0.008 0.019 0.001 0.006 0.003 1.071 
SubC6 -0.088 -0.070 -0.073 -0.075 -0.079^ 1.163 
SubC7 -0.177* -0.027 -0.035 -0.021 -0.054 1.673 
SubC8 -0.019 0.057 0.057 0.051 0.052 1.046 
SubC9 -0.304*** -0.224*** -0.224*** -0.190*** -0.194*** 1.483 
SubC11 -0.091 -0.022 -0.022 -0.026 -0.026 1.043 
Volume   0.574*** 0.588*** 0.205*** 0.461*** 34.872 
Valence  0.359*** 0.348*** 0.335*** 0.113 4.514 
Week   -0.091^ -0.126* -0.131** 1.262 
Interaction between volume and valence    -0.633** -0.551* 31.083 
Interaction between week and volume     -0.358** 8.376 
Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 
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Table 16: Ridge Regression Analyses for the Effect of Volume of Search Products 
 
Dependent Variable New Product Sales 
Model Fitness  
R-Square 0.582 
Adjusted R-Square 0.537 
F Value 12.749 
Sig.F Change 0.000 
Shipping 0.043^ 
Price 0.013^ 
Promotion 0.039* 
Other Store(OS) -0.049* 
SubC1 -0.029 
SubC2 -0.018 
SubC3 0.053* 
SubC4 0.006 
SubC5 0.012 
SubC6 -0.039 
SubC7 0.01 
SubC8 -0.036* 
SubC9 -0.129** 
Volume  0.261*** 
Valence 0.255*** 
Week -0.045 
Interaction between volume and valence 0.057* 
Interaction between week and volume 0.190*** 

Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 
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Table 17: Ridge Regression Analyses for the Effect of Volume of Experience Products 
 
Dependent Variable New Product Sales 
Model Fitness  
R-Square 0.698 
Adjusted R-Square 0.643 
F Value 12.706 
Sig.F Change 0.000 
Shipping 0.1789* 
Price 0.131* 
Promotion 0.115^ 
Other Store(OS) -0.073 
SubC1 -0.059 
SubC2 -0.016 
SubC3 -0.041 
SubC4 -0.061 
SubC5 -0.001 
SubC6 0.098 
SubC7 -0.003 
SubC8 -0.076 
SubC9 -0.049 
SubC10 0.067 
SubC11 -0.017 
Volume  0.153* 
Valence 0.232** 
Week -0.069 
Interaction between volume and valence 0.132* 
Interaction between week and volume 0.141* 

Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 
 

5.3 Panel Data Analysis  

We conducted cross-sectional analysis to test our hypotheses, but it may have 

cohort bias effect. We conducted panel data analysis for all the hypotheses. We 

conducted hierarchical regression to test the first five hypotheses, and used fixed 

effect model to test the last hypothesis, using STATA. Some of the hypotheses are 

also supported by the results as mentioned above, while some are not. More 

specifically, the first five hypotheses are supported, the results as same as those of 

cross-sectional analysis. The last hypothesis is not supported, and the result is contrary 

to that of cross-sectional analysis. Overall, panel data analyses show that the results 
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are in fact more complicated. Figure 17 and Figure 18 shows the dynamic pattern of 

sales for selected new search products and new experience products respectively.  

 

 

              Figure 17: Graphics for New Search Product Sales Over Time  

 

 

           Figure 18: Graphics for New Expeience Product Sales Over Tim
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Then, we calculated the correlation coefficients for all the variables in our study to check the interrelationships between the variables. Table 

17 shows the correlations between the variables. The interrelationship between the variables is less than 0.6. The cutoff of interrelationship is 

commonly used as 0.85. Therefore, the variables do not measure the same thing.  

Table 18: Correlation Matrix for All the Variables in Panel Data Analysis 

 SR VO VA NP PP SH PR OS PRO 

Sales Ranking(SR) 1 0.254** 0.605** 0.078** 0.593** 0.566** 0.277** -0.208** 0.630** 

Volume(VO)  1 0.234** 0.051** 0.239** 0.275** -0.006 -0.065** 0.228** 

Valence(VA)   1 0.187** 0.942** 0.508** 0.397** -0.193** 0.557** 

Negative 

Percentage (NP) 

   1 
0.038* 0.086** -0.079** 0.003 0.139** 

Positive Percentage 

(PP) 

    1 
0.511** 0.456** -0.206** 0.572** 

Shipping(SH)      1 0.023 -0.155** 0.535** 

Price(PR)       1 -0.220** 0.263** 

Other Store (OS)        1 -0.185**

Promotion(PRO)         1 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 
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We ran hierarchical regression to test the first five hypotheses. To test hypothesis 

1 regarding the effect of volume of online consumer reviews on new product sales, at 

step one, we regressed the dependent variable on all covariates (shipping, price, 

promotion, other stores and product type). At step two, we regressed the dependent 

variable on all the covariates and the volume of online consumer reviews. Table19 

shows that this regression model is significant (adjusted R-Square=0.511, F =1301.81, 

P< 0.001), and coefficient of volume of online consumer reviews is positive 

(Standardized Beta = 0.279, P<0.001). Thus, hypothesis 1 is supported. 

 

Table 19: Hierarchical Regression Analyses for the Effect of Volume of Overall Data  

Dependent Variable New Product Sales 
Model Fitness Model 1 Model 2 
R-Square 0.439 0.511 
Adjusted R-Square 0.438 0.511 
F Value 1166.02 1301.81 
Sig.F  0.000 0.000 
Shipping 0.325*** 0.273*** 
Price 0.146*** 0.149*** 
Promotion 0.197*** 0.163*** 
Other Store(OS) -0.047*** -0.039*** 
Product Type 0.319*** 0.318*** 
Volume  0.279*** 

Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 
 

To test hypothesis 2 regarding the effect of valence of online consumer reviews on 

new product sales, at step one, we regressed the dependent variable on all covariates 

(shipping, price, promotion, other stores and product type). At step two, we regressed 

the dependent variable on all the covariates and the valence of online consumer 

reviews. Table 20 shows that this regression model is significant (adjusted 

R-Square=0.561, F =15966.80, P< 0.001), and coefficient of valence of online 

consumer reviews is positive (Standardized Beta = 0.427, P<0.001). Thus, hypothesis 
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2 is supported. 

 
 
Table 20: Hierarchical Regression Analyses for the Effect of Valence of Overall Data  
 

Dependent Variable New Product Sales 
Model Fitness Model 1 Model 2 
R-Square 0.439 0.562 
Adjusted R-Square 0.438 0.561 
F Value 1166.02 1596.80 
Sig.F 0.000 0.000 
Shipping   0.325***   0.253*** 
Price   0.146***   0.056*** 
Promotion   0.197***   0.103*** 
Other Store(OS)  -0.047***   -0.045*** 
Product Type   0.319***   0.158*** 
Valence     0.427*** 

Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 
 
 

To test hypothesis 3 regarding the effect of valence of online consumer reviews 

versus that of volume of online consumer reviews on new product sales, at step one, 

we regressed the dependent variable on all covariates (shipping, price, promotion, 

other stores and product type). At step two, we regressed the dependent variable on all 

the covariates, the valence of online consumer reviews and volume of online 

consumer reviews. Table 21 shows that this regression model is significant (adjusted 

R-Square=0.596, F =1576.83, P< 0.001). The coefficient of valence of online 

consumer reviews is 0.367 (P<0.001), while the coefficient of volume of online 

consumer reviews is 0.199 (P<0.001). That means the effect of valence of online 

consumer reviews is greater than that of volume of online consumer reviews on new 

product sales. Thus, hypothesis 3 is supported. 
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Table 21: Hierarchical Regression Analyses for the Effect of Volume and Valence of 
Overall Data  

Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 
 

 

To test hypothesis 4 regarding the effect of online negative consumer reviews 

versus that of online positive consumer reviews on new product sales, at step one, we 

regressed the dependent variable on all covariates (shipping, price, promotion, other 

stores and product type). At step two, we regressed the dependent variable on all the 

covariates, percentage of online positive consumer reviews and percentage of online 

negative consumer reviews. Table 22 shows that this regression model is significant 

(adjusted R-Square=0.525, F =1179.06, P< 0.001). The coefficient of percentage of 

online negative consumer reviews is 0.347 (P<0.001), while the coefficient of 

percentage of online positive consumer reviews is 0.158 (P<0.001). That means the 

effect of online negative consumer reviews is greater than that of online positive 

consumer reviews on new product sales. Thus, hypothesis 4 is supported. However, 

there is the same problem with the result by cross-sectional analysis. The coefficient 

of online negative reviews is positive rather than negative.  

 

 

Dependent Variable New Product Sales 
Model Fitness Model 1 Model 2 
R-Square 0.439 0.597 
Adjusted R-Square 0.438 0.596 
F Value 1166.02 1576.83 
Sig.F Change 0.000 0.000 
Shipping   0.325***   0.226*** 
Price   0.146***  0.071*** 
Promotion   0.197***  0.092*** 
Other Store(OS)  -0.047***  -0.039*** 
Product Type   0.319***  0.179*** 
Valence    0.367*** 
Volume   0.199*** 
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Table 22: Hierarchical Regression Analyses for the Effect of Positive and Negative of 
Overall Data  

Dependent Variable New Product Sales 
Model Fitness Model 1 Model 2 
R-Square 0.439 0.525 
Adjusted R-Square 0.438 0.525 
F Value 1166.02 1179.06 
Sig.F Change 0.000 0.000 
Shipping   0.325*** 0.291*** 
Price   0.146***   0.102*** 
Promotion   0.197*** 0.122*** 
Other Store(OS)  -0.047*** -0.054*** 
Product Type   0.319*** 0.151*** 
Negative Percentage   0.347*** 
Positive Percentage   0.158*** 

Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 
 

To test hypothesis 5, first, we ran hierarchical regression regarding the effect of 

the volume and valence of online consumer reviews of all the products on new 

product sales. At step one, we regressed the dependent variable on all covariates 

(shipping, price, promotion, other stores and product type). At step two, we regressed 

the dependent variable on all the covariates, the valence of online consumer reviews 

and volume of online consumer reviews. Table 21 shows that this regression model is 

significant (adjusted R-Square=0.596, F =1576.83, P< 0.001). The coefficient of 

valence of online consumer reviews is 0.367 (P<0.001), while the coefficient of 

volume of online consumer reviews is 0.199 (P<0.001).  

Second, we ran a hierarchical regression analysis for hypothesis 5 regarding the 

effect of the volume and valence of online consumer reviews of search products and 

those of experience products on new product sales respectively. At step one, we 

regressed the dependent variable on all covariates (shipping, price, promotion, other 

stores and product subcategory). At step two, we regressed the dependent variable on 

all the covariates, the valence of online consumer reviews and volume of online 
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consumer reviews. Table 23 shows the predictive validity of the model as indicated by 

R-Square change is higher for experience products (0.307) compared to search 

products (0.045). The regression models are significant (P<0.001). The role of volume 

and valence of online consumer reviews comes out strong in both groups (Table 23).  

Then we used Chow test to compare the regression models by product type with 

the general model (Table 24). Chow test statistic was calculated to be 316.81. This is 

found to be significant at the 0.05 level. Therefore, there is statistical evidence of 

product type influencing the relationship between the variables in the model.  Finally, 

we checked the coefficients of related variables in the model. The coefficient of 

volume of experience products (0.376) is greater than that of search products (0.147). 

The coefficient of valence of experience products (0.379) is greater than that of 

experience products (0.282). Thus, hypothesis 5a and hypothesis 5b are both 

supported. 

 

Table 23: Role of Product Type: Regression Analysis 
 
Variable  

Standardized 
Coefficient 

Standard 
Error 

T for H0: 
Parameter=0 

Prob 
>|T| 

Product Type = Search (Adjusted R-Square = 0.045)
Valence  0.282 0.013 12.55 0.000 
Volume  0.147 0.0003 4.94 0.000 
Product Type = Experience (Adjusted R-Square = 0.307)
Valence  0.379 0.006 27.71 0.000 
Volume  0.376 0.0003 29.51 0.000 
 

Table 24: Role of Product Type: Analysis of Variance  
 
Source  

 
d.f. 

Sum of 
Squares 

R-Square 
Change 

Prob 
>|T| 

General model  
Model  2 5231.951 0.596 0.000 
Error  7467 3537.011   
Product Type = Search  
Model  2 1809.629 0.045 0.000 
Error  2845 1370.177   
Product Type= Experience  
Model  2 356.704 0.307 0.000 
Error  4619 2541.806   
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Hierarchical regression analysis was then conducted for hypothesis 6 regarding the 

effect of the volume of online consumer reviews on new product sales for two types of 

products over time. Since the PLC of new experience products is different from that of 

new search products, we used fixed effect model to analyze experience product data 

and search product data respectively. 

Then, we ran a hierarchical regression analysis for search products. Table 25 

shows the results of regression analysis for the search products. The high R-Square 

(0.104) implies that fit of the regression model is good. The interaction between 

ageweek and volume of search products (Standardized Beta= -0.002, P<0.001) is 

significant and the coefficient is negative, which means the effect of online WOM 

decreases with time. In other words, the effect of the volume of online consumer 

reviews on new product sales in the early stage of PLC is greater than that in the late 

stage of PLC. It is not as we expected. The interaction between volume and valence is 

negative (-0.0002), which means the more positive online WOM can lead to fewer 

product sales. It is contradictory to our expectation.  

In the same way, we ran hierarchical regression analysis for experience products. 

Table 26 shows the results of regression analysis for experience products. The 

R-Square (0.163) implies that fit of the regression model is good. The interaction 

between ageweek and volume of experience products (Standardized Beta=0.00003, 

P<0.001) is significant and the coefficient is positive, which means the effect of online 

WOM on new product sales increases with time. In other words, the effect of the 

volume of online consumer reviews on new product sales in the late stage of PLC is 

greater than that in the early stage of PLC. It is as we expected. The interaction 

between volume and valence is positive (0.004), which means more positive online 
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WOM can lead to more product sales. However, the coefficient of volume is negative 

(-0.023). It contradicted the results of previous hypotheses. Thus, H6 is not supported.  

 

 

Table 25: Fixed Effect Model for the Effect of Volume of Search Products 
Dependent Variable New Product Sales 
Model Fitness  
R-Square 0.104 
F Value 24.1 
Sig.F  0.000 
Shipping -0.764 
Price 0.001 
Promotion 0.347*** 
Other Store(OS) -0.303 
SubC1 (dropped) 
SubC2 -0.096 
SubC3 -0.102 
SubC4 (dropped) 
SubC5 (dropped) 
SubC6 -0.289 
SubC7 -0.273 
SubC8 (dropped) 
SubC9 (dropped) 
Volume  0.043*** 
Valence 0.044*** 
AgeWeek 0.006*** 
Interaction between volume and valence -0.009*** 
Interaction between ageweek and volume -0.002*** 
Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 
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Table 26:  Fixed Effect Model for the Effect of Volume of Experience Products 

Dependent Variable New Product Sales 
Model Fitness  
R-Square 0.163 
F Value 129.7 
Sig.F  0.000 
Shipping 0.048^ 
Price 0.006* 
Promotion 0.052** 
Other Store(OS) (dropped) 
SubC1 0.538 
SubC2 0.728^ 
SubC3 -0.185 
SubC4 0.270 
SubC5 (dropped) 
SubC6 (dropped) 
SubC7 0.127 
SubC8 (dropped) 
SubC9 -0.047 
SubC10 (dropped) 
SubC11 (dropped) 
Volume  -0.023*** 
Valence 0.0175*** 
AgeWeek -0.013*** 
Interaction between volume and valence 0.004*** 
Interaction between ageweek and volume 0.00003*** 

Note: *: Sig.<=0.05, **: Sig.<=0.01, ***: Sig.<=0.001,^.Sig.<=0.1 
 

5.4 Summary  

   To conclude this chapter, the findings confirm the six connections among volume 

of consumer reviews, valence of consumer reviews, product type, and stage of PLC in 

the proposed conceptual model by using hierarchical regression technique and fixed 

effect model. Table 27 summarizes the results of the hypothesis testing in 

cross-sectional analysis and panel data analysis. All of the hypotheses are statistically 

supported by cross-sectional data, but not all supported by time series data. 
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Table 27: Summary of Hypotheses Results 
 
Hypotheses  Cross-sectional Analysis Panel Data Analysis 
 
H1: The more the volume of 
online consumer reviews, the 
greater impact it has on the new 
product sales.  
 

 
Supported 

 
Supported 

 
H2: The more positive the 
valence of online consumer 
reviews, the greater impact it has 
on new product sales. 
 

 
Supported 

 
Supported 

 
H3: Valence of online consumer 
reviews has greater impact on 
new product sales than volume of 
online consumer reviews.  
 

 
Supported 

 
Supported 

 
H4: Online negative consumer 
reviews have greater impact on 
new product sales than online 
positive consumer reviews.  
 

 
Supported 

 
Supported 

 
H5a: The volume of online 
consumer reviews has greater 
impact on new experience 
product sales than new search 
product sales. 
 

 
Supported 

 
Supported 

 
H5b: The valence of online 
consumer reviews has greater 
impact on new experience 
product sales than new search 
product sales.  
 

 
Supported 

 
Supported 

 
H6: The effect of volume of 
online consumer reviews on the 
new product sales is greater in the 
late stage of PLC than in the early 
stage of PLC.  
 

 
Supported 

 
Not supported 
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                   CHAPTER 6. DISCUSSION  

 
 
 
 

The last chapter proceeds as follows. First, the findings of this study to WOM 

marketing are discussed. Second, both theoretical implications and managerial 

implications are provided. Finally, the limitations of this study are pointed out with 

possible directions for future research.  

6.1 Findings  

This study has made an initial attempt to explore the role of product type in the 

impact of online WOM on new product sales on Amzon.com. This study has several 

important findings. First, the findings suggest that online consumer WOM affects 

consumers’ purchasing behavior at Amazon.com. Specifically, two measures of online 

consumer WOM have positive impact on new product sales. That is, the higher 

volume, the greater its impact on new products sales. The more positive the valence of 

online consumer reviews, the greater positive impact it has on new product sales. In 

addition, online positive WOM is positively related with new product sales, but online 

negative WOM is not necessary to relate with new product sales negatively. Negative 

WOM is also positive to new product sales. Therefore, volume and valence are two 

good measures of online WOM to test the relationship between online WOM and new 

product sales.  

Second, two measures of online consumer WOM have different effect on new 

product sales. The effect of valence of online consumer reviews on new product sales 

is greater than that of volume of online consumer reviews. This finding solves the 

inconsistency about which measure of online WOM affects new product sales in the 
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previous studies (Liu 2006; Duan et al 2005; Chevalier and Mayzlin 2006).  

Third, we investigated the role of product type in the relationship between online 

WOM and new product sales. Product type moderates the relationship between 

volume of online consumer WOM and new product sales. Also, it moderates the 

relationship between valence of online consumer WOM and new product sales. More 

specifically, the volume of online consumer WOM influences new experience product 

sales more than new search product sales. Similarly, the valence of online consumer 

WOM influences new experience product sales more than new search product sales. 

We can see the online WOM has different impact on the sales of different types of 

new products.  

Fourth, online negative consumer WOM influences online new product sales more 

than online positive consumer WOM. This finding reflects that consumers pay more 

attention to online negative WOM more than online positive WOM, though there are 

more positive online WOM than negative WOM. However, although the magnitude of 

online negative WOM is greater than that of online positive WOM, the sign of online 

negative WOM is positive, which is counter-intuitive. This problem also exists in 

other paper (Liu 2006). That means negative reviews do not necessarily have a 

negative effect. On the contrary, they may help with promoting the products. This is 

totally contrary to the conventional wisdom - bad news travel faster and hurt worse. In 

our case, bad news can be good. We offer one theoretical explanation called the 

inoculation theory (McGuire 1961). This theory is used to explain more about how 

attitudes and beliefs change, and more importantly, how to keep original attitudes and 

beliefs consistent in the face of persuasion attempts. It has been assessed in varied 

context, including politics, health campaigns, and marketing among others. In our 

context, this theory is applied to explain the phenomenon that once bad reviews have 
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been posted, people are no longer so negative about the product.  

Finally, the hypothesis that the effect of volume of online consumer reviews is 

greater in the late stage of PLC than in the early stage of PLC is supported by 

cross-sectional analysis, but is not supported by panel data analysis. The inconsistent 

results from panel data analysis could be due to some reasons. Because we used sales 

ranking to replace real sales as dependent variable, but sales’ ranking, unlike actual 

sales data, is not cumulative. According to Amazon.com, sales ranking is the ranking 

of products based on weekly sales adjusted by cumulative sales. It can be a problem to 

use sales ranking as dependent variable to test the last hypothesis by panel data 

analysis. Therefore, we cannot give a definitive answer to this problem at this point. 

6.2 Implications of This Study  

This research has both the theoretical implications and managerial implications of 

the impact of online WOM on new product sales. 

6.2.1 Theoretical Implications 

Several theoretical implications can be derived from the findings of current study 

for academics. First, Innovation Adoption Theory can be applied to online 

environment, because the role of online WOM on new product sales was tested by 

applying Innovation Adoption Theory online successfully. In the previous studies, the 

scholars usually use this theory in offline setting. This study enlarges the range of 

application of this theory. Furthermore, WOM can be operationalized, which is 

breakthrough in the WOM marketing field. Before, the traditional techniques do not 

measure WOM directly. Using online consumer reviews is a new way to collect 

WOM information to test Bass Model. It is easier and cheaper for researchers to 
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collect such information than before.  

Second, two measures of online WOM can be used to test the relationship 

between online WOM and new product sales. Volume and valence are good indicators 

to test such relationship. It is consistent with the result of previous related studies 

(Chatterjee 2001; Dellarocas et al 2004; Godes and Mayzline 2004)  

Third, the valence of online WOM influences new product sales more than the 

volume of online WOM does. In the previous studies, some scholars think the volume 

of WOM influences product sales, rather than the valence of WOM. Others have the 

opposite opinion about it. The study solves this inconsistency.  

Fourth, product type has a moderating effect on the relationship between online 

WOM and new product sales. That is, the effect of online WOM has greater impact on 

new experience product sales than on new search product sales. Therefore, this good 

moderator can be used in other research area, such as new product diffusion. Other 

researchers can incorporate product type in the Bass Model to test it in the future 

study.  

    Finally, the finding that the effect of online WOM is greater in the late stage of 

PLC than in the early stage of PLC is inconclusive, because we have different results 

in the cross-sectional analysis and panel data analysis for this hypothesis. If 

researchers are interested in this issue, they can use other data to test this hypothesis in 

the future studies.  

6.2.2 Managerial Implications  

    The findings of this study also indicate several possible interesting practical 

directions for current practitioners. First, the findings highlight the need for 

practitioners to observe and respond to online WOM communication actively. 
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According to online consumer reviews, practitioners can develop more suitable 

marketing strategy and promote consumer advocacy to create positive reviews when 

they launch new products. 

Second, manufactures may also incorporate valuable consumer feedback in the 

development of new products, especially for the negative WOM. It is better for 

practitioners to collect negative opinions from consumers to improve the quality of 

products in these aspects, and retain the good quality of products so that practitioners 

can gain more market shares and keep their competitive advantage. However, it is not 

necessary for practitioners to manipulate the negative reviews posted by others on the 

website, because according to our finding, online negative reviews may not hurt new 

product sales too much, and may improve the sales instead.  

Third, because online WOM affects new experience product sales more than new 

search product sales, the extent to which practitioners in different industries pay 

attention to online consumer WOM may be different. For examples, practitioners in 

IT industries may pay attention to online consumer WOM less than those in 

entertainment industries do, because the online WOM influences the sales of new 

products in IT industries less than those in entertainment industries do.  

Fourth, online WOM is very useful for consumers to evaluate the quality of 

experience products. Usually, search products are sold well in the online environment, 

but the experience products are not, since search products have more tangible 

attributes and lower perceived risk than experience products (Erdem and Swait 1998). 

Therefore, the third party information, such as online WOM, provides more vivid 

information for experience products, decreases the perceived risk of them, makes 

consumers willing to buy such products online and gives e-retailers more 

opportunities to sell different kinds of products, which they did not sell before, 
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because of high-perceived risks consumers confronted with.  

Last, although our finding in cross-sectional analysis about the role of stage of 

PLC in new product sales is not consistent with that in panel data analysis, yet it is 

better for practitioners to pay attention to the effect of online WOM after introduction 

stage of PLC, because, at least, the effect of online WOM on new product sales is 

more influential than ever before.  

6.3 Limitations and Suggestions  

   Although this study produces interesting and meaningful findings, the study has its 

limitations. First, we collected data from only one online retailer, which is 

Amazon.com, so there may be sample selection bias. Although the data from 

Amazon.com are reliable, and more researchers use the data from this website, the 

results may be better if they can be compared with data from other sources. Second, 

we collected data for 9 month, which may be short. Maybe it cannot reflect the whole 

process of PLC. Therefore, future research should collect for a longer time.  

Moreover, there are no control variables for offline competition and offline 

promotion of each new product, such as competitive price from offline stores. It is 

better to add more control variables in the future studies. In addition, we do not yet 

control for brand image of the product. While we try to control for some effects of 

brand through price and the product category dummy variables, we do not explicitly 

control for brand. The individual coding of brand for each individual product is a long 

process, since there are many brands in search products and experience products. 

However, we hope to control for brand in future study, as it is an important factor 

(Amblee and Bui 2007).  

Fifth, for our data, there are many subcategories in each product type, so product 
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heterogeneity may influence the results. Different products have different 

characteristics. If such difference is too high, the result is not reliable to use such kind 

of data to test our hypotheses. Therefore, we will choose a narrower product category 

in the future study.  

Sixth, we used the average rating to measure the valence of online WOM, rather 

than percentage of online positive reviews and percentage of online negative reviews. 

This method maybe loses some information. For example, two products may have 

same average rating but with distinct percentage of negative reviews (say 20% versus 

40%). Therefore, the average rating may not reflect the actual structure of online 

reviews, and further influence the results of our study.  

   Finally, we used sales ranking of new products, rather than real sales data, so it is 

a problem for us to test the last hypothesis using noncumulative data. Because it is 

difficult for us to collect actual sales data from Amazon.com, several researchers have 

attempted to change our sales ranking into time series data by using the method of 

Reverse Engineering. Sornette et al. (2004) transformed book sales ranking into time 

series sales data by purchasing books from Amazon.com and record the changes in 

sales ranking. The specific steps are described as follows.  

Every book that has sold at least one copy on the online retailer Amazon is 

automatically assigned a sales rank. Typically, two (respectively ten) sales a day puts a 

title in the top 10,000 (respectively 1,000) sellers. The top 100 (respectively 10) sell 

more than about 30 (respectively 100) books per day through Amazon. Amazon.com 

updates the ranks of its top 10,000 books every hour, according to a formula 

accounting for recent sales and the entire sales history of the book. Direct sales are 

confidential data but their statistical properties can be reconstructed approximately by 

careful observations. The complementary cumulative distribution P(s) of sales s can 
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be approximated by a stationary power law P(s) = C/sμ with μ≈ 2 in the range of sales 

from a few books sold per day to a few hundred. They use this power law to transform 

book ranks r(s) = NP(s) into sales s according to the formula s = (NC/r)1/μ, where N 

is the total number of Books used to normalize the distribution. Thus, a time series of 

the rank r of a given book as a function of time, sampled at a given rate, can be 

transformed into a time series of instantaneous sales flux, through this conversion.  

However, their research focuses on the sales rank of books sold at Amazon.com. It 

is unclear whether the same process can be used to “reverse engineer” the sales rank 

data of other products, such as video games and consumer electronics, into proxy sales 

volume. If such transformed data from sales rank is feasible and proven valid in the 

future, panel data analysis can help assessing the effect of online consumer reviews on 

the sales of new products.  
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Appendix A: Pretest Questionnaire 

 
Hello, I’m an M.Phil candidate of Marketing and International Business Department in Lingnan 

University. I’m now conducting a questionnaire survey for my final dissertation. Please carefully 

read the instructions followed and kindly help me complete this questionnaire. 

 

 

How much do you agree with the following statements? Please respond to the following 

statements on the scales of 1-7 regarding video games and electronics. 

 

Please 
note: 

1= 
Absolutely 
Disagree 

2= 
Strongly 
Disagree 

3= 
Somewhat 
Disagree 

4= 
Neutral 

5= 
Somewhat 
Agree 

6= 
Strongly 
Agree 

7= 
Absolutely 
Agree 

  

1. It’s important for me to see this product to evaluate how well it 
will perform. 1 2 3 4 5 6 7

2. It’s important for me to touch this product to evaluate how well 
it will perform. 1 2 3 4 5 6 7

3. It’s important for me to hear this product to evaluate how well it 
will perform. 1 2 3 4 5 6 7

1. I can adequately evaluate this product using only information 
provided by the retailer or manufacturer about the product’s 
attributes and features. 

1 2 3 4 5 6 7

2. I can evaluate the quality of this product simply by reading 
information about the product. 1 2 3 4 5 6 7

 

 

 

 

                       ----- Thank you for your kind help. ----- 
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Appendix B: Example of a Video Game on Amazon.com  

 

 
-------------------------------------------------------------------------------------- 
#1 Text review 
 
I have played every Nancy Drew PC game and have enjoyed them all (some more than others). I 
was looking forward to this release from the time I heard about it and even pre-ordered a copy 
before it came out to make sure I got one. It really is like simply following a story. When you walk 
into an area, everything you need to check out already has magnifying glasses on it. All exits are 
already marked with symbols. To "solve" things, like getting a character to talk or opening a 
locked door, you just have to play some very simplistic mini-games. Everything was much too 
easy and the game can be finished in just one day. It would have been a much better game if they 
had made it a little harder. You should have to look around to find the things you need in a room. 
You should have choices of where to go, not automatically be sent to the next thing you need to do.  
Maybe it would be a good choice for a young child, but if you enjoyed the Nancy Drew PC games 
and are expecting something similar, don't waste your money. Or at least wait to find a used copy 
because they should be available in stores within another day or two. 
 
------------------------------------------------------------------------------------------- 
 
According to the definition of Amazon Rating System, Please rate this text review. 
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Appendix C: Example of a Electronics on Amazon.com  

 
 

 
-------------------------------------------------------------------------------------------------------- 
#1 Text review 
 
If 'TV out' isn't important to you, or you don't care about playing podcasts back to back without 
fiddling with the ipod, then I'm sure you'll still love the new 3g nano. I like the video feature, the 
size (great for commuting), style, and colors of the new nano 3g, and iPods have the easiest/best 
way of selecting and sorting through music of any MP3 player out there. (I've tried a couple other 
brands.) But....  
 
...in my case, one of the key reasons I bought the 3g was so that I could display photos or video on 
a TV. Unfortunately, that feature requires the purchase of a new cable which costs 50 bucks(the old 
AV cables don't work. The new cables connect through the docking port, not through the 
headphone input.) Of course this is something most people won't find out till they buy the product 
and the old AV cable. Not only do you need a new cable, but I went to many stores to get the new 
cable and none of them had it in stock. I finally had to order it directly from the iTunes store. I 
suppose someday soon, 3rd party cables will be made for one third the cost of the new AV cable 
made by Apple, but if you want the video out feature now, be prepared to fork over another 50 
bucks. Yuck!  
 
Also disappointing to me was a change to the software that significantly impacts what I use the 
ipod for. I mostly listen to podcasts and like to download all my favorites and then listen to them 
all without messing with the ipod (very nice feature when you're working out for an hour or more 
and don't want to have to mess with the ipod on the go). On the old ipod, I could find my podcasts 
on the music menu under "genres" and could click on "podcasts" and "all" and it would play all of 
them without my ever having to touch it again. Cool!!! The new ipod doesn't allow this. Not cool!! 
Podcasts have been moved to the root menu so they no longer show up on the music menu and 
there is no way to play them all non-stop. (If anyone finds a way to do this, please make a 
comment.) So, now when I'm on a long ride on my bike, or I'm in traffic, I have to stop and fumble 
with the 3g after the end of each podcast. That is really annoying and what used to be a great 
feature of the 2g nano, suddenly becomes impossible on the 3g. Bummer! Now, I'm back to using 
my 2g nano on my biking commute.  
 
Update (Jan 12)... The 'shuffle on' setting is what has caused my podcasts to stop playing back to 
back. If shuffle is set to 'off' they play without touching the iPod. Thanks for the comments that led 
to this discovery. Still, there hasn't been a software fix for this and it is annoying to have to fiddle 
with the shuffle setting depending on whether I want to listen to music or podcasts. Hello Apple!  
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Finally, the 3g nano has some compatibility problems with other products. For example, I bought 
the iHome alarm clock and it has glitches when I use my 3g but works well with my older 2g. 
Same thing with a sports watch I tested in the store. The TIMEX ironman watch that has wireless 
controls for the ipod didn't work with the 3g. So, if you are an early adopter, be aware of that. I'd 
recommend that if you have the 3g nano, that you test it carefully in the store with any product that 
claims to be 3g nano compatible before you buy and make sure the features you care about 
actually work.  
 
------------------------------------------------------------------------------------------- 
According to the definition of Amazon Rating System, Please rate this text review. 
 

 

 
 
 
 

 



87 
 

REFERENCES 

Arndt, J. (1967). Role of product-related conversations in the diffusion of a new 
product. Journal of Marketing Research, 4, 291-295. 
 
Anderson, E. (1998).Customer satisfaction and word of mouth. Journal of Service 
Research, 1(1), 5-17.  
 
Anderson, E. and Salisbury, L (2003). The formation of market level expectations and 
its covariates. Journal of Consumer Research, 30 (June), 115-24.  
 
Ahluwalia, R., and Shiv, G. (1997). The effect of negative information in the political 
and marketing arenas: Exceptions to the negativity effect. Advances in Consumer 
Research. 24. 222.  
 
Ahluwalia, R. and Gurhan-Canli, Z. (2000). The effects of extensions on the family 
brand name: An accessibility-diagnositicity. Journal of Consumer Research. 27. 
371-381.  
 
Banerjee, V.A. (1993). The economics of rumors. The Review of Economic Studies, 
60(2), 309-327 
 
Bart, Y., Shankar, V., Sultan, F., and Urban, G. (2005). Are the drivers and role of 
online trust the same for all web sites and consumers? A large scale exploratory and 
empirical study. Journal of Marketing, 69, 133-152.  
 
Bansal, H.S., and Voyer, P.A. (2000). Word of Mouth processes within a services 
purchase decision context. Journal of Service Research, 3, 166-77. 
 
Bass, F.M (1969). A new product growth model for consumer durables. Management 
Science, 15(5). 215-227. 
 
Basuroy, S., Chatterjee, S., and Ravid, S.A. (2003). How critical are critical reviews? 
The box office effects of film critics, stat power and budgets. Journal of Marketing, 
67(October) 103-117.  
 
Bearden, W.O., and Etzel, M.J. (1982). Reference group influence on product and 
brand purchase decisions. Journal of Consumer Research, 15(4), 473-481.  
 
Ben-Sira, Z. (1980). Affective and instrumental components in the physician-patient 
relationship: An additional dimension of interaction theory. Journal of Health and 
Social Behavior.21 (June), 170-180.  
 
Bickart, B., and Schindler, R. (2001). Internet forums as influential sources of 
consumer information. Journal of Interactive Marketing, 15, 31-40.  
 
Bikhchandani, S.D., Hirshleifer, D., and Welch, I. (1991). A theory of fads, fashions, 
custom and cultural change as information cascades. Journal of Political Economics. 



88 
 

100. 992-1026.  
 
Borgida, E., and Nisbett, R.E. (1977). The differential impact of abstract versus 
concrete information on decisions. Journal of Applied Social Psychology, 7, 258-271.  
 
Bowman, D. and Narayandas, D. (2001). Managing customer-initiated contacts with 
manufactures: the impact on share of category requirements and Word-of-Mouth 
behavior. Journal of marketing Research, 38(August), 281-97. 
 
Brown, Jo, Broderick, J. Amanda, and Lee, Nick (2007). Word of mouth 
communication within online communities: conceptualizing the online social network. 
Journal of Interactive Marketing, 21(3), 2-10.  
 
Brown, J.J and Reingen, P.H. (1987). Social ties and word-of-mouth referral behavior. 
Journal of Consumer Research, 14(3), 350-362. 
 
Cathcart, R.S. and Gumpert, G. (1986) Mediated interpersonal communication: 
Toward a New Typology. Inter/Media: Interpersonal communication in a Media 
World. 26-40. New York: Oxford University Press.  
 
Chatterjee, P (2001). Online reviews: Do consumers use them? Advances in Consumer 
Research, 28(1), 129-133. 
 
Chen, P.Y., Wu, S.Y. and Yoon, J.S. (2004). The impact of online recommendations 
and consumer feedback on sales. In Proceedings of the International Conference on 
Information Systems, Washington, D.C., 711-724. 
 
Chen, Y.B. and Xie, J.H. (2004). Online consumer review: A new element of 
marketing communications mix. Working Paper, Department of Marketing, University 
of Florida.  
 
Chen, Y.B, Fay, S, and Wang, Q. (2003). Marketing implications of online consumer 
product reviews, Working Paper, University of Florida. 
 
Chevalier, J. and Goolsbee, A. (2003) Valuing Internet retailers: Amazon.com and 
BN.com and Noble.com. Yale School of Management working paper.  
 
Chevalier, J. A. and Mayzlin, D.(2006) The effect of word of mouth on sales: online 
book reviews, Journal of Marketing Research, Vol. XLIII, 345-354 
 
Chow, G.C. (1960). Test of equality between sets of coefficients in two linear 
regressions. Econometrica, 28(2), 2-9.  
 
Clemons, K.E., Gao, G..D, and Hitt, M.L. (2006).When online reviews meet 
hyperdifferentiation: A study of the craft beer Industry. Journal of Management 
Information Systems, 23(2), 149-171. 
 
Coleman, J.S., Katz, E., and Menzel, H. (1966). Medical innovation: A diffusion study. 
Bobbs-Merrill, Indianapolis, IN.  
 



89 
 

Datta, P.R., Chowdhury, D.N., and Chakraborty, B.R. (2005). Viral marketing: New 
form of Word of Mouth through Internet. The Business Review, Summer, 3(2), 69-72. 
 
Dellarocas, C.N. and Narayan, R. (2005).What motivates people to review a product 
online? A study of the product-specific antecedents of online movie ratings 
http://www.womma.org/content/dellarocas.pdf 
 
Dellarocas, C. N., Awad, N and Zhang, X.Q. (Michael) (2004). Using online reviews 
as a proxy of Word-of-Mouth for motion picture revenue forecasting (May). Available 
at SSRN: http://ssrn.com/abstract=620821 
 
DoubleClick(2004).DoubleClick’s Touchpoints II: The Changing Purchase Process, 
March. 
 
Duan, W.J., Gu, B, and Whinston, A (2005), Do online reviews matter? An empirical 
investigation of panel data, working paper, Department of Management Science and 
Information Systems, University of Texas at Austin.  
 
Eliashberg, J., and Shugan, S.M. (1997). Film critics: Influencers or predictors? 
Journal of Marketing 61(2): 68-78.  
 
Erdem, T. and Swait, J. (1998). Brand equity as a signaling phenomenon. Journal of 
Consumer Psychology, 7. 131-57.  
 
Feldman, S. (1966). Motivational aspects of attitudinal elements and their place in 
cognitive interaction. In S. Feldman (Ed.), Cognitive Consistency, New York: 
Academic Press.  
 
Foster, A., and Rosenzweig, M. (1995). Learning by doing and learning from others: 
Human capital and technical change in agriculture. Journal of Political Economics. 
103(6), 1176-1210.  
 
Fiske, S.T. (1980). Attention and weight in person perception: The impact of negative 
and extreme behavior. Journal of Personality and Social Psychology, 38, 889-906.  
 
Gao, Guodong, Gu, Bin, and Lin, Mingfeng (2006). The dynamics of online consumer 
reviews, working paper.  
http://digital.mit.edu/wise2006/papers/2B-1_WISE2006-GaoGuLin.pdf 
 
Godes, D. and Mayzlin,D (2004). Using online conversation to study word-of-mouth 
communication. Marketing Science 23(4), 545-561. 
 
Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology 
78(6),1360-1380.  
 
Granitz, N.A. and Ward, J.C (1996). Virtual community: A sociocognitive analysis. 
Advances in Consumer Research, (23), 161-166.  
 
Grewal, R., Cline, T., and Davies, A. (2003). Early-entrant advantage, word-of-mouth 
communication, and the consumer decision-making process. Journal of Consumer 



90 
 

Psychology, 13(3), 187-197.  
 
Griffin, E. (2003). A first book at communication theory. Boston, MA: McGraw Hill. 
 
Helm, S. (2000).Viral Marketing-Establishing customer relationships by 
‘word-of-mouse’. Electronic Marketing, 10(3), 1589-161.  
 
Hennig-Thurau, F (2004).Electronic word-of-mouth via consumer-opinion platforms: 
what motivates consumers to articulate themselves on the internet? Journal of 
Interactive Marketing.18 (1), 38-52.  
 
Hennig-Thurau, T. and Walsh, G. (2004). Electronic Word of Mouth: motives for and 
consequences of reading customer articulations on the Internet. International Journal 
of Electronic Commerce. 8(2). 51-74.  
 
Herr, P.M., Kardes, F.R., and Kim, J. (1991). Effects of word-of-mouth and 
product-attribute information on persuasion: An accessibility-diagnosticity perspective. 
Journal of Consumer Research, 17(4), 454-462. 
 
Hu, N., Liu, L. and Zhang J. (2008). Do online reviews affect product sales? The role 
of reviewer characteristics and temporal effects. Information Technology and 
Management.  
 
Kahneman, D. and Tversky, A. (1979), Subjective probability: A judgment of 
representativeness, Cognitive Psychology, 3(July), 43-54. 
 
Kanouse, D.E. and Hanson, L.R. (1972). Negativity in evaluations. In E. E. Jones et al. 
(Eds.), Attribution: Perceiving the Causes of behavior. Morristown, NJ: General 
Learning Press.  
 
Kaplan, E., Cramton, P, and Paltiel, A. (1989). Nonrandom mixing models of HV 
transmission. Lecture Notes Math. 83. 218-241. 
  
Katz, E., and Lazarsfeld, P. (1995). Personal Influence. New York: The Free Press.  
 
King, M.F., and Balasubramanian, S.K. (1994). The effects of expertise, end goal, and 
product type on adoption of preference formation strategy. Journal of the Academy of 
Marketing Science, 22(2), 146-159.  
 
Kirman, P. A. (1993). Ants, rationality, and recruitment. Qualitative Journal of 
Economics. 108(February), 137-56.  
 
Li, X. and Hitt, L. (2004). Self selection and information role of online product 
reviews. Workshop on information systems and Economics. Washington, DC.  
 
Liu, Y. (2006). Word of Mouth for movies: its dynamics and impact on box office 
revenue. Journal of Marketing 70, 74-89. 
 
Luo, Y.D. (1998). Timing of investment and international expansion performance in 
China. Journal of International Business Studies, 29(2), 391-407.   



91 
 

 
Mahajan, V, Muller, E. and Srivastava, R. (1990). Determination of adopter categories 
by using Innovation Diffusion Models. Journal of Marketing Research, 27 (February), 
37-50.    
             
Mathews, J. (1994). Bells, Whistles and Bottle Battles, At Christmas, Ad agencies 
play a high-tech game of “Can you top this?” Washington Post (December 13).   
         
McFadden, L. D. and Train, E. K. (1996).Consumers’ evaluation of new products: 
Learning from self and others. Journal of Political Economy, 104(4), 683-703.  
 
McGuire, W.J. (1961). The effectiveness of supportive and refutation defenses in 
immunizing defenses. Sociometry, 24, 184-197. 
 
Misner, I.R. (1994). The word’s best known marketing secret, Austin: Bard &Stephen.  
 
Moon, J.Y., Chadee, D. and Tikoo, S. (2008). Culture, product type, and price 
influences on consumer purchase intention to buy personalized products online. 
Journal of Business Research, 61, 31-39.  
 
Munoz, L. (2003). High-tech Word of Mouth maims movies in a flash. Los Angeles 
Times.Los Angeles, August 17.  
 
Amblee, N. and Bui, T. (2007). The impact of Additional Electronic Word-of-Mouth 
on Sales of Digital Micro-products Over Time: A Longitudinal Analysis of Amazon 
Shorts, Proceeding of the 40yh Annual Hawaii International Conference on System 
Sciences.  
 
Neelamegham, R. and Chintagunta (1999), A Bayesian Model to forecast new product 
performance in domestic and international markets. Marketing Science, 18(2), 115-36. 
  
Nelson, P (1970). Information and consumer behavior. Journal of Political Economy, 
78 (2), 311-329.  
 
Phelps, J.E. Lewis, R., Mobilio, L., Perry, D., and Raman, N. (2004). Viral marketing 
or electronic word-of-mouth advertising: Examining consumer responses and 
motivations to pass along email. Journal of Advertising Research, 23(4), 370-378. 
 
Phelps, J.E. and Xue, F., (2004). Internet-facilitated consumer-to-consumer 
communication: The moderating role of receiver characteristics. International Journal 
of Internet Marketing and Advertising, 1(2), 121-136. 
 
Piller, C (1999). Everyone Is A Critic in Cyberspace, Los Angeles Times, December 3. 
 
Putsis, W., Balasubramanian, E., and Kaplan, S.S. (1997). Mixing behavior in 
cross-country diffusion. Marketing Science. 16. 354-369.  
 
Reingen, P., Foster, B., Brown, J.J., and Seidman, S. (1984). Brand congruence in 
interpersonal relations: A social network analysis. Journal of Consumer Research. 11, 
1-26.  



92 
 

 
Reingen, P., and Kernan, P. (1986). Analysis of referral networks in marketing: 
Methods and illustration. Journal of Marketing Research. 23, 370-378. 
 
Reinstein, A.D., and Snyder, M. C. (2005). The influence of expert reviews on 
consumer demand for experience goods: a case study of movie critics, Journal of 
Industrial Economics, Blackwell Publishing, 53(1), 27-51.  
 
Rogers, E.M. (1983). The Diffusion of Innovations (3rd ed.). New York: The Free 
Press. 
 
Rogers, E.M. (1995).The Diffusions of Innovations (4th ed.). New York: The Free 
Press. 
 
Rogers, E.M. (2003).The Diffusions of Innovations (5th ed.). New York: The Free 
Press. 
 
Richins, M.L. (1983). Negative word of mouth by dissatisfied consumers: a pilot 
study. Journal of Marketing, 47(1), 68-78.  
 
Schnapp, M. and Allwine, T. (2001). Mining of book data from Amazon.com, 
presentation at the UCB/SIMS web mining conference, 
http://www.sims.berkeley.edu/resources/affiliates/workshops/webmining/slides/ORA.
ppt.  
 
Skowronski, J.J., and Carlston, D.E. (1989). Negativity and extremity biases in 
impression formation: A review of explanations. Psychological Bulletin, 105, 
131-142.  
 
Smallwood and Conlisk (1979). Product quality in markets where consumers are 
imperfectly informed. Quarterly Journal of Economics, XCIII (1), 1-23 
  
Sornette, D., Deschatres, F., Gilbert, T., and Ageon, Y. (2004). Endogenous versus 
exogenous shocks in complex networks: an empirical test using book sales rankings. 
Physical Review Letters, 93, 2228701-228704.  
 
Subramaniam, C., Shaw, J. M., and Gardner, M. D. (2000). Product marketing and 
channel management in electronic commerce. Information Systems Frontiers. 1(4), 
363-372.  
 
Taylor, S.E. and Thompson, S.C. (1982). Stalking the elusive “vividness” effect. 
Psychological Review, 89(2), 155-181.  
 
Smith, R. (1993). Integrating information from advertising and trial: processes and 
effects on consumer response to product information. Journal of marketing research. 
2(March), 204-219. 
 
Tedeschi, B. (1999). Consumer products are being reviewed on more web sites, some 
featuring comments from anyone with an opinion. New York Times, E-commerce 
report; October 25.  



93 
 

 
Thompson, N. (2003). More companies pay heed to their “word of mouse” reputation. 
New York Times (June 23).  
 
Van den Bulte, C. and Lilien, G. (2001), Two-stage partial observability models for 
innovation adoption, working paper, Wharton School, University of Pennsylvania.  
 
Weathers, D., Sharma, S., and Wood, L.S. (2007). Effects of online communication 
practices on consumer perceptions of performance uncertainty for search and 
experience goods. Journal of Retailing, 83(4) 393-401. 
 
Wee, T.T.T. (2003). Factors affecting new product adoption in the consumer 
electronics industry. Singapore Management Review, 25(2).51-72. 
 
Weinberger, M.C., and Dillon, W.R. (1980). The effects of unfavorable product 
information. In J.C. Olson, (Ed.), Advances in Consumer Research, 7, 528-532.  
 
Weinberger, M.G., Allen, C.T., and Dillon, W.R. (1981). Negative information: 
perspectives and research directions. In K. Monroe (Ed.), Advances in Consumer 
Research. 8, 398-404.  
 
Wejnert, B. (2002) Integrating models of diffusion of innovations: A conceptual 
framework. Annual Review of Sociology, 28(1), 297-326. 
 
Wright, P., (1974). The harassed decision maker: time pressures, distractions and the 
use of evidence. Journal of Applied Psychology, 59(October), 555-561.  
 
Yang, Z., and Peterson, R.T. (2003). I read about it online… Marketing Research, 15.  
 
Zajonc, R.B. (1968). Attitudinal effects of mere exposure. Journal of personality and 
social psychology, 7: Monograph, 1-29.  
 
Zhang, X., Dellarocas, C. and Awad, N.F.. (2004). The impact of online movie 
reviews on box office performance. Workshop on Information Systems and Economics 
(WISE ). 
 
Zufryden, F. (1996). Linking advertising to box office performance of new film 
release: A marketing planning approach. Journal of Advertising Research, 
36(July-August), 29-41.  
 
 
 
 


	The effect of online consumer reviews on new product sales : a study of amazon.com
	Recommended Citation

	tmp.1561799138.pdf.HIgA3

