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Abstract

It is crucial to obtain automatically and efficiently a well-distributed set of Pareto optimal
solutions in multi-objective evolutionary algorithms (MOEAs). Many studies have proposed
different evolutionary algorithms that can progress towards the Pareto front with a widely
spread distribution of solutions. However, most theoretically convergent MOEASs necessitate
certain prior knowledge about the Pareto front in order to efficiently maintain widespread
solutions. In this paper, we propose, based on the new E-dominance concept, an Adaptive
Rectangle Archiving (ARA) strategy that overcomes this important problem. The MOEA
with this archiving technique provably converges to well-distributed Pareto optimal solutions
without prior knowledge about the Pareto front. ARA complements the existing archiving
techniques, and is useful to both researchers and practitioners.
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1 Introduction

Most real-life optimization problems or decision-making problems are multi-objective in na-
ture, since they normally have several (possibly conflicting) objectives that must be satisfied
at the same time [Coello Coello et al. (2002); Deb (2001); Jin et al. (2004); Jin and Sendhoff
(2003)]. Multi-Objective Evolutionary Algorithms (MOEAs) have been gaining increasing at-
tention among researchers and practitioners because they are suitably applied to find multiple
Pareto optimal solutions in a single run [Deb (2001)]. This fact enables a decision-maker to have
a less-subjective search in the first phase of finding a set of well-distributed solutions. In addition,
because of inherent cooperation in an evolutionary search procedure, MOEAs are computation-
ally promising for simultaneous discovery of multiple Pareto optimal solutions. These features
have attracted numerous researchers to develop different MOEAs [Coello Coello et al. (2002)] —
from MOGA [Fonseca and Fleming (1993)], NPGA [Horn et al. (1994)], and NSGA [Srinivas and
Deb (1994)] with skillful fitness assignment and nondominated sorting; to SPEA [Zitzler and
Thiele (1999)], PESA-II [Corne et al. (2001)], NSGA-II [Deb et al. (2002)], SPEA2 [Zitzler et al.
(2002)], IMOEA [Tan et al. (2001)], and DMOEA [Yen and Lu (2003)] with elitism, diversity
estimation and maintenance; to PAES [Knowles and Corne (2000)] (based on AGA [Knowles
and Corne (2003)]) and e-MOEA [Deb et al. (2003)] (based on e-dominance [Laumanns et al.
(2002)]) with sound diversity and convergence guarantee.

Despite the great success of these MOEAs, there have been few successful attempts of de-
veloping convergence-guaranteed and computationally efficient procedures that maintain a well-
distributed Pareto optimal set with little prior knowledge about the objective space. Most MOEAs
may get widespread solutions using different diversity exploitation mechanisms [Corne et al.
(2001); Deb et al. (2002); Horn et al. (1994); Yen and Lu (2003); Zitzler et al. (2002); Zitzler

and Thiele (1999)], but few of them have convergence guarantee. Some early theoretical work



has pointed out some approaches to enable MOEAs to converge to Pareto front [Hanne (1999);
Rudolph and Agapie (2000)], but with little consideration of the distribution of the Pareto op-
timal solutions obtained [Laumanns et al. (2002)]. Several recent studies have made substantial
progress to maintain diversified and Pareto optimal solutions using archiving [Knowles and Corne
(2003); Laumanns et al. (2002)]. These archiving techniques have been successfully and widely
used in handling multiobjective problems [Coello Coello et al. (2004); Deb et al. (2003); Knowles
and Corne (2004, 2000)]. The recent theoretical research, based on no-free-lunch theorems, sub-
stantiates that MOEAs which use different archiving schemes can differ in overall performance,
i.e., the performance averaged over all possible problems [Corne and Knowles (2003)]. Thus,
archiving has been becoming an essential part of MOEAs. However, the archiving techniques
in [Laumanns et al. (2002)] desire the distribution knowledge about the Pareto front before-
hand. If the parameters are not set appropriately, in some extreme cases, only one solution is
archived because it e-dominates all the others [Knowles and Corne (2003, 2004)]. In addition,
the Adaptive Grid Archiving (AGA) strategy has been proved to converge to a Pareto optimal
set of bounded size under certain conditions [Knowles and Corne (2003)]. Unfortunately, this
condition is not easily satisfied, and the solution oscillation problem has happened in practical
applications [Knowles and Corne (2003)] or has been demonstrated empirically [Fieldsend et al.
(2003); Knowles and Corne (2004)].

One basic idea of these effective and efficient diversity preserving mechanisms is to partition
the whole objective space into mutually excluding regions, and then consider the Pareto opti-
mality and diversity locally in these regions [Corne et al. (2001); Deb et al. (2003); Knowles and
Corne (2003, 2000); Laumanns et al. (2002); Tan et al. (2001); Yen and Lu (2003)]. Each region
is of limited volume while the range of the Pareto front is not known a priori. This conflict
makes it difficult to explore the whole objective space, and results in the unexpected difficulty in

the recent work [Knowles and Corne (2003); Laumanns et al. (2002)]. In this work, we introduce



the new concept of open rectangles and apply the (open) rectangles! in the space partitioning,
such that even an infinite objective space can be enveloped by a limited number of rectangles.
We introduce an Extended Pareto dominance (E-dominance) to achieve this idea. In addition,
our objective space partitioning is adjusted adaptively according to the solutions found so far.
The archive retains well-distributed Pareto optimal solutions in the crucial region enveloped
by the normal rectangles, and some accidental solutions in the region enveloped by the open
rectangles. Therefore, our proposed Adaptive Rectangle Archiving (ARA) strategy can explore
the whole objective space, and maintain representative Pareto optimal solutions efficiently and
automatically. Moreover, these archived solutions approximately dominate the whole Pareto
front without any prior knowledge.

In the rest of the paper, we first give a template of MOEAs with archiving. Then, in
Section 3, we review the existing MOEAs and discuss why they do not have sound convergence
and diversity guarantee when no prior knowledge is available. In section 4, the E-dominance
concept and the E-Pareto set are introduced, and ARA is proposed to retain an E-Pareto set,
which approximately dominates the whole Pareto front. This is supported by the theoretical
results, both based on iterations and infinite treads, given in Section 5. In Section 6, conclusive

comments and possible future research are discussed.

2 Preliminaries

Without loss of generality, we focus on minimization multiobjective problems in this paper.
However, either by using the duality principle [Deb (2001)] or by simple modifications to the

domination definitions, these definitions and algorithms can be used to handle maximization or

!Strictly speaking, they are rectangular (hyper)parallelepipeds and open rectangular (hyper)parallelepipeds in
high dimensional objective space, respectively. For the sake of convenience, we use rectangles and open rectangles,

terms in 2-dimensional space, to indicate them throughout the paper.



combined minimization and maximization problems.
For a multiobjective function I' from X (C R?) to a finite set Y (C R™, m > 2), a decision
vector x* = [z, 25, ,xfl]T is Pareto optimal if and only if for any other decision vector x € X,

their objective vectors y* = I'(x*) = [y}, v3, " - ,y;]T and y = I'(x) holds either
y; < y; for any objective i(1 <1i < m),

or there exist two different objectives i, j such that

(i <wi) A (Y] > vj) -

Thus, for a Pareto optimal decision vector x*, there exists no decision vector x which would
decrease some objective values without causing a simultaneous increase in at least one other
objective. These Pareto optimal decision vectors are good trade-offs for the multiobjective
optimization problem. For finding these vectors, dominance in the objective space plays an
important role. An objective vector y = F(X(l)) = [ 51),?/51), ‘e ,y,(%)]T dominates another

objective vector y(?) = I'(x(?)) if and only if the former is partially less than the latter in each

objective, i.e.,
(1)

It is denoted as y(!) < y. For notational convenience, y(!) is defined to be incomparable with
y@ if 2(yM) < y@ v y@ <y vy = @) Tt is denoted as y1) ~ y2). We also denote
— (y(l) < y(2)) as y(l) 74 y(2) That means (y(l) — y(2) V y(2) < y(l) \V y(l) ~ y(2))

Likewise, the dominance and incomparability relations can be defined between an objective



vector y and a set A(C Y):

y<A < JacA y=<a (2)
A<y < dac A, a<y (3)
y~A < Vacd, y~a (4)
YyAA << VacA yHXa (5)
ALy <= VacA, aHy. (6)

Given the set of objective vectors Y, its Pareto front Y* contains all vectors y* € Y that
are not dominated by any other vector y € Y. That is, Y* = {y* € Y|y € Y,y < y*}. We call
its subset a Pareto optimal set. Each y* € Y™* is Pareto optimal or nondominated. A Pareto
optimal solution reaches a good tradeoff among these conflicting objectives: one objective cannot
be improved without worsening any other objective. In this paper, we assume that there are at
least two different values for each objective on the Pareto front Y*, which holds for almost all
multiobjective problems.

In the general case, it is impossible to find an analytic expression of the Pareto front. The
normal procedure to find the Pareto front is to compute the objective values of decision vec-
tors sufficiently enough, and then determine the Pareto optimal vectors to form the Pareto
front [Coello Coello et al. (2004)]. However, for many multiobjective optimization problems,
the Pareto front Y* is of substantial size, and the determination of Y* is computationally pro-
hibitive. Thus, the whole Pareto front Y* is usually difficult to get and maintain. Furthermore,
it is questionable to regard the whole Pareto front as an ideal answer [Fieldsend et al. (2003);
Laumanns et al. (2002)]. The value of presenting such a large set of solutions to a decision
maker is also doubtful in the context of decision support. Usually, a small set of representative
Pareto optimal solutions are expected. Finally, in a solution set of bounded size, preference

information could be used to steer the process to certain parts of the search space. Therefore,



all practical implementations of MOEAs have maintained (off-line) a bounded archive of best

(nondominated) solutions found so far [Knowles and Corne (2003)].

Procedure 1 A MOFA with Archiving

1. t:=0, A® .= ¢:

2. Repeat:

3. t:=t+1;

4. y®) := EvoLuTion(A¢—1); /* Generates a solution */
5. AW = ArRcHIVE(A(—D y(®); /* Update Archive */
6. Termination: Until stopping criterion fulfilled;

7. Output: A® | ¢.

In order to facilitate our analysis on archiving strategies, we separate the evolutionary pro-
cedure and the archiving procedure as done in [Coello Coello et al. (2004); Knowles and Corne
(2003); Laumanns et al. (2002)]. Procedure 1 gives an abstract description of a MOEA with
archiving. The integer ¢ denotes the iteration count, the m-dimensional objective vector y®) is
the solution generated at iteration ¢, and the set A®) is the archive at iteration ¢ and should
contain a representative subset of the objective space Y. EVOLUTION represents an evolutionary
algorithm, where the evolutionary operator is associated with variation (recombination, muta-
tion, and selection). It can generate a population of solutions, possibly using the contents of the
old archive A®=1) . However, it only outputs a new solution at each iteration ¢ to facilitate our
theoretical analyses. ARCHIVE gets the new solution y(®) and the old archive A®~1 and then
determines the updated archive A®). The archive may be used in two ways: On one hand, it is
used to store the best representative solutions found so far; On the other hand, the evolutionary
operator exploits this archive to steer the search to promising regions.

This paper mainly deals with the procedure ARCHIVE, i.e., how to appropriately update the

archive. For each objective vector y, additional information about the corresponding decision



values could be associated to the archive, but is of no concern in this paper. It is also out of our
concern of keeping different decision vectors that map to the same point in the objective space.
According to the requirements of MOEASs, an ideal archiving strategy should have the following

four properties.

Pareto optimality: They converge to the Pareto front in each run;

Good distribution: Archived solution are distributed on the whole Pareto front in a well-

defined sense;

Computational efficiency: The time and memory complexity should be low;

Little prior knowledge requirement: Little knowledge about the multiobjective problem,

especially the Pareto front, is necessitated beforehand.

This last property may facilitate us greatly, since most of time, we have to make decisions on
some conflicting problems with little prior knowledge. However, most existing effective archiving
strategies require the knowledge about the Pareto front a priori. As mentioned above, useful
information of the objective space may be stored in the archive during running. Archiving can
be adjusted adaptively. We present such a archiving strategy in Section 4, after the discussion

of the existing techniques in the next section.

3 Related work

We briefly discuss a number of archiving or elitist strategies in the literature of MOEAs. Early
theoretical work of MOEAs mainly concentrates on convergence, or the Pareto optimality. Hanne
(1999) gave a convergence proof for a (u+ A)-MOEA with Gaussian mutation distributions over
a compact real search space by the application of a (negative) efficiency preservation selection

scheme, which only accepts new solutions dominating at least one of the archived solutions.



The algorithm is efficient, but puts no attention on the distribution of solutions, and arbitrary
regions may become unreachable [Knowles and Corne (2003); Laumanns et al. (2002)]. Based
on [Rudolph (1998)], Rudolph and Agapie (2000) applied stochastic process techniques to show
that MOEAs with a fixed-size archive and a sophisticated selection operator can avoid the prob-
lem of deterioration. Their algorithms with evolutionary operators having a positive transition
probability matrix provably converge to the Pareto optimal ones, but they do not guarantee a
good distribution of the solutions archived.

A number of elitist MOEAs have been developed to address diversity of the archived solu-
tions. The diversity exploitation mechanisms include mating restriction, fitness sharing (NPGA
[Horn et al. (1994)]), clustering (SPEA [Zitzler and Thiele (1999)], SPEA2 [Zitzler et al. (2002)]),
nearest neighbor distance (NSGA-II [Deb et al. (2002)]), crowding count (PAES [Knowles and
Corne (2000)], PESA-IT [Corne et al. (2001)], DMOEA [Yen and Lu (2003)]), or some pres-
election operators [Deb (2001)]. Most of them are quite successful, but they cannot ensure
convergence to Pareto optimal sets.

Recently, Laumanns et al. (2002) proposed several archiving strategies that guarantee to
progress towards the Pareto front and covers roughly the whole range of Pareto optimal solu-
tions. The algorithms maintain a bounded archive of Pareto optimal solutions that is iteratively
updated in the presence of a new solution based on the concept of e-dominance. However, the
€ value, which determines solution resolution, would either be set manually or be determined
adaptively [Laumanns et al. (2002)]. In the former case, the size of the archive is bounded
only by a function of the objective space ranges, which is usually unknown in advance and not
easy to set [Knowles and Corne (2004)]. Whereas in the latter case, e may become arbitrarily
large, and thus only poor representatives of the sequence of solutions presented to the archive
are retained. In some extreme cases, only one solution is archived since it e-dominates all other

Pareto optimal solutions [Knowles and Corne (2003, 2004)].



More recently, Knowles and Corne (2003) analyzed a metric-based archiving and an Adaptive
Grid Archiving (AGA) strategies. The metric-based one requires S-metric which assigns a scalar
value to each possible approximation set reflecting its quality and fulfilling certain monotonicity
conditions. Convergence is then defined as the achievement of a local optimum of the quality
function. However, its computational overhead is prohibitively high for optimization problems
with several objectives. Their AGA strategy, implemented in PAES [Knowles and Corne (2000)],
maintains solutions in some critical hyperboxes of the Pareto front once they have been found.
The strategy is provably convergent when the Pareto front spans the feasible objective space
in all objectives. This prerequisite is not satisfied for most optimization problems with more
than two objectives. Thus, the oscillation problem of the archive has happened in practical
applications [Knowles and Corne (2003)] or been demonstrated empirically [Fieldsend et al.
(2003); Knowles and Corne (2004)]. The archiving strategy in [Fieldsend et al. (2003)] aims at
archiving all the Pareto optimal solutions and is normally not computationally efficient.

In order to diversify the archived solutions, the density estimation or diversity preservation
has been locally made in some boxes for computational efficiency. However, the objective space
is usually unknown in advance and sometimes infinite. Thus, it is often impractical to use boxes
to envelop the space appropriately. This issue results in the oscillation of AGA [Knowles and
Corne (2003)] and probably poor representation of the Pareto front in [Laumanns et al. (2002)],

though they may generate widespread Pareto optimal solutions.

4 Adaptive Rectangle Archiving Strategy
4.1 Sequential Archiving and Range of Pareto Fronts
We first introduce two definitions for the range of the Pareto front Y™*.

Definition 1 (Nadir) The nadir of the Pareto front Y* consists of the minimal objective values

10



of the Pareto front, i.e., its i'" element Nadir(Y*); = mi}I/l vl
y*e *

Definition 2 (Zenith) The zenith Y™ consists of the maximal objective values of the Pareto

front, i.e., Zenith(Y*);= max y.
y*GY*

Nadir(Y*) and Zenith(Y™*) indicate the range of the whole Pareto front. A deterministic
archiving algorithm gives a deterministic output (an archive) for an input sequence of solutions.
At each iteration, its archiving decision is solely based on the current archive and the new input
solution. That means the archiving algorithm is explicitly not allowed to access to previous
solutions from the input sequence, except the ones in the archive. It is easy for a deterministic
archiving algorithm to maintain the nadir of the Pareto front as in Section 4.3 and [Knowles and
Corne (2003)]. Unfortunately, if the archive size is smaller than the Pareto front, a deterministic
archiving algorithm seems impossible to maintain the zenith of the Pareto front, even every

possible solution is inputted infinite times.

Theorem 1 If the archive size is smaller than the Pareto front, i.e., |A| < |Y™*|, no determin-
istic archiving strateqy can guarantee to maintain the zenith of the Pareto front in a sequential

manner.

Proof: We use a counterexample to show it. Let Y* = {y(l),y@), e ,y(")}, n=|Y* > 2,

(k)

)

<y for1 <k < j <nandcertaini € {1,--- ,m}.

every two vectors are incomparable, and y i
We have Zenith(Y™); = yi(n). We further assume there exist n mutual incomparable objective
vectors {v(l),v@), e ,v(”)} such that vi(k) =1+ yin), y® < v for k = 1,---,n, and
v(®) ~ y) for k # j. It is worth pointing out that such an example exists once m > 2.

For any archiving algorithm, the final archive A should be a subset of Y*. Therefore, if there

k)

exists a non-Pareto optimal solution, say, v(*), it should be substituted later by the new input

y*) which dominates v(¥). Otherwise, if it could not be substituted, the maximal value in the

11



ith objective of the archive will be 1 + yz-(n), which is larger than Zenith(Y™*);. That means, the
dominated solution in the archive should be substituted by one which dominates it.

On the other hand, since |A| < n, there must exist a Pareto optimal solution, say y(™ not
included in the archive, denoted by A(™). If the new input is v(™), there are two possibilities of
the archiving decision: reject it or accept it. If it is rejected, the archiving algorithm will not

accept the input y(™ too, because y(™ and v(® have the same relationship with the current

archive A and should be treated in the same way. Then the maximal value in the it" objective

(

of the archive will always be smaller than yin). If it is accepted, one Pareto optimal solution, say,
y(k)(k < n) should be removed. Later on, v(™ in the archive will be replaced by y™ because
of dominance. Now, the archive, denoted by A®*), cannot reject v(¥) because the comparison
relation between v(*) and A®*) is the same as the relation between v(® and A™). Therefore,
the maximal value of the archive in the i*" objective is varying; it is larger or smaller than
Zenith(Y™); sometimes. So, no deterministic archiving can determine the maximal objective
values of the Pareto front. |

As we can see, there are two goals of archiving in order to retain the zenith of the Pareto
front, trying to find the Pareto optimal solutions and trying to identify the maximal objective

values on the Pareto front. These two goals may drive the archive to move in two conflicting

directions when the archive size is smaller than the Pareto optimal set.

4.2 Extended Pareto Dominance

In this section, we present an Adaptive Rectangle Archiving (ARA) algorithm that addresses
the problem of unknown Pareto fronts. In this archiving strategy, we use a self-adaption mech-
anism to preserve diversity according to the archived information about the objective space. To
overcome the problem of unavailability of the maximal objective values on the Pareto front, we

partition the whole objective space into two non-overlapping regions, the crucial region and the

12



open region. In the crucial region, a solution is allowed to be preserved in a bounded rectangle’,
and thus many representative Pareto optimal solutions are archived. In the unknown, even in-
finite, open region, some open rectangles are used to envelop a solution. These open rectangles
may even envelop infinite objective values. Within these open rectangles, some Pareto optimal
solutions are selected to be archived. The rectangles are specified according to our extended
Pareto dominance concept, which is defined below, followed by the description of ARA.

Since we need to use an bounded archive of objective vectors to approximately dominate the
whole Pareto front, a method is to permit some tolerance on dominance. To achieve it, we first

extend the Pareto dominance as follows.

Definition 3 (E-dominance) Let vy and y@ be two objective vectors. yU s said to BE-

dominate y®) for a transferring function, FUN, and a constant vector e(> 0), if and only if

(1)

Fun(y) — e; <FON@”), Vi€ (L, m}. (7)

It is denoted as yV) <p y@.

The transferring function should be continuous and monotonously increasing. This ensures
that E-dominance may be implied by the traditional dominance, i.e., if y) < y® then y(M) <p
y@. When yM <5 y@ and y® <5 y®, y <5 y® does not always hold. Thus, the E-
dominance relation is not transitive.

E-dominance generalizes several dominance relations. For example, it becomes e-dominance [Lau-
manns et al. (2002)] as FUN(y;) = In(y;) and e; = In(1+¢), additive e-dominance [Hanne (1999);
Reuter (1990)] as FuN(y;) = y; and e; = ¢, and the Pareto dominance as FUN(y;) = y; and
e; = 0.

In order to envelop unknown, possible infinite, objective values, we may employ a nonlinear

transferring function, e.g.2, FUN(y;) = arctan(y; * scale;). Thus, even the infinite values are

y*kscale;
14y *scale;

2 Another example is FUN(y;) = . Here y; is supposed to be not less than 0, which may be easily got

13



7 v .
- =arctan(y, it
@ EEE xE=|n£yE) ,
oI - Dominate I’
== = E-dominate 'I
s} =+ ‘-dominate '
i
!
! e
4 K O " i nd
31} @s”‘!r l
e L |
af it A G
A
= l |
R
ok ; o -
y # gl r | - E"iw
e _,4,41-;, - .
et e l I '
1 - |
e e |
'__.m" &
0-&—‘“’“‘“"“““ | 1 L H* p— ! ‘I
4] 0.5 1 1.5
¥4 (C""XEF

Figure 1: Illustration of Pareto dominance, E-dominance, and e-dominance. The regions dom-
inated by y under three different dominance relations are illustrated by three shadows respec-
tively. The calculation of vectors y&) and y(© is illustrated in the bottom right corner. Two

transferring functions are indicated by two curves.
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tan( 3 —e;)

transferred to a limited value, say 7, and may be E-dominated by a bounded value, say, — 2~

The scale; can be specified adaptively according to the solutions found so far. In this paper, we
exemplify E-dominance using the arctangent function though the definitions and algorithms are
applicable to other transferring functions. The comparison among E-dominance, e-dominance,
and Pareto dominance is illustrated in Figure 1. Based on the E-dominance relation, we have

the following definitions.

Definition 4 (E-approximate Pareto Set) Let Y C R™ be a set of objective vectors, FUN
a monotonically increasing continuous function, and e a nonnegative vector. Then a set Yg is
called an E-approximate Pareto set of Y, if any vector y € Y is E-dominated by at least one
vector a € Yg, i.e.,

Vy € Y :Ja€ Yg such that a <py. (8)

The set of all E-approzimate Pareto sets of Y is denoted as Pr(Y).

As mentioned above, since finding the whole Pareto front of an arbitrary set Y is usually
not practical because of its usually large size, one needs to be less ambitious in general. An
E-approximate Pareto set is a practical solution concept as it not only represents all vectors Y
approximately but also may be of smaller size. The E-approximate Pareto set is of theoretical

interest. A further refinement of the concept leads to the following definition.

Definition 5 (E-Pareto Set) Let Y C R™ be a set of vectors, FUN a monotonically increasing

continuous function, and e a nonnegative vector. Then a set Yy, CY is called an E-Pareto set

of Y, if

1. Y} is an E-approzimate Pareto set of Y, i.e., Y} € Pp(Y), and

2. Y5 only contains Pareto optimal vectors of Y, i.e., Y5 C Y™

after a linear transformation as shown in Section 4 or in [Knowles and Corne (2004)].

15



The set of all E-Pareto sets of Y is denoted as Pj,(Y').

Compared with an E-approximate Pareto set, an E-Pareto set seems more attractive as it con-
sists of Pareto optimal solutions only. E-Pareto sets are not unique. We can archive a bounded
E-Pareto set for any Pareto front even with infinite objective value as shown in Section 4.3.
There are many different concepts for Pareto set approximation in the literature [Laumanns
et al. (2002)]. Most of them deals with infinite sets, which are of theoretical interest [Hanne
(1999)] but are not practical for our purpose of producing and maintaining a representative sub-
set. Some of them, say e-dominance [Laumanns et al. (2002)] and additive e-dominance [Hanne
(1999); Reuter (1990)] may produce bounded archives to represent the whole Pareto front if its
range is given. But they are difficult to generate bounded representative subset when the range

of Pareto front is previously unknown, and even infinite.

4.3 Archiving Procedure

Our adaptive archiving strategy basically has two features. One is to determine the cru-
cial region adaptively. The other one is to find an E-Pareto set based on the E-dominance
concept. For descriptive convenience, we partition the archive in ARA into two parts, i.e.,
A = {Almin)  Alare)y - Thys, A® = {A(mint) Alere)) The purpose of A% is to maintain an
E-Pareto set according to the solution space information collected in A1) A(Min) g an array:

Almin) — [a(l), a® ... ,a(m)]. Each element, al?, is initialized with infinite, and stores the solu-

Z@ = min ){agk) .

tion that has the minimal value found so far in the i'® objective. We have a o
alk GA min

Furthermore, we introduce two vectors associated with A" to indicate the crucial region,

amin) with o{™™ = ¢) = min {al(-k)} and a(™?*) with agmaz) = max {al(.k)}. The cru-

i i alk) e A(min) a(k) e Almin)
cial region, whose member dominates a(™?®) but is dominated by a™") contains most Pareto

optimal solutions generated so far, and so it is decisive for archiving. For example, all solutions

dominated by a(™%) are not Pareto optimal. Especially, all Pareto optimal solutions are located
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Figure 2: Adaptive rectangle partitioning of a 2-D objective space. The dashed line segments
indicate open rectangles. The gray rectangle indicates the crucial region indicated by a(™m)
and a(™@®) The gray line segments indicate the region E-dominated by a solution, denoted by

a pentagram.
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in the crucial region in 2-D case. The gray rectangle in Figure 2 indicates the crucial region,

and envelops all four Pareto optimal solutions, indicated by pentagrams.

Procedure 2 ARA(y, A) /* Adaptive Rectangle Archiving®/

1. if ((y =< A(mm)) \% (y ~ a(mm))) then

2 for allie{1,--- ;m} do

3 if (y < agi)) then

4 al =y; /* RECEDES */
5. else if (y < al")

6 al) :=y; /* DOMINATES */
7 end if

8 end do

9 Alerez) .= /* RE-FORMS A(#70) #/
10. for all a € A such that A™™) % a do
11. INSERTINRECT (a, A(@¢2), A(Min)
12. end do
13, Alare) — glarea) .
14. else if (A" Ly) /* UPDATES A(@¢) #/
15. INSERTINRECT (y, A7), Almin) ;

16. end if
17. A= {Almin) Alare)} .

The pseudo code of our archiving strategy, ARA, is given in Procedure 2, which is illustrated
in Figure 3. In each iteration, the algorithm first checks whether the crucial region determined
by A1) ghould be updated. If a new objective value is smaller than the minimal one of the
archive, RECEDES replaces the archived vector with the new one, and the minimal objective value
is archived; If the new vector dominates a vector in A" DoOMINATES will also replace the old
vector with the new one. This operation ensures the convergence of A" to the Pareto front,
and then the convergence of a™") and a(™%*) If the crucial region is updated, the solutions in

A% have to be archived again (RE-FORMS A(%79)) such that the solutions in A(#"¢) are always
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chosen based on the current A(Mmin)

If the input vector y neither has a smaller objective value nor dominates any vector in A"
then it is processed by INSERTINRECT, whose pseudo code is given in Procedure 3. The proce-
dure mainly chooses representative Pareto optimal solutions based on the crucial region specified
by A™Min) Tt can be described at two levels. On the coarse level, the objective space is dis-
cretized by dividing it into rectangles (see Function 4), where each vector uniquely belongs to one
(open) rectangle. Using the proposed E-dominance relation on these rectangles, the algorithm
always maintains a set of nondominated rectangles through INTERRECTDOM and OCCUPIES.
They guarantee the E-approximate Pareto property. On the fine level, at most one solution is
maintained for each rectangle, which assures well-distribution of solutions. Within a rectangle,
each representative vector can only be replaced by a dominating one (INTRARECTDOM), which
ensures the convergence to the Pareto front.

Procedure 3 is similar to Algorithm 3 in [Laumanns et al. (2002)], which generates an e-
Pareto set. However, they are based on different dominance relations and they partition the
objective space in different ways. Only Procedure 3 can handle an unknown objective space in
a reasonable way. This idea is embodied in the function RECT outlined in Function 4.

The function RECT gives a possible implementation which partitions the crucial region finely
while envelops the unknown regions with open rectangles based on E-dominance. Since it is ar-
duous to detect automatically the maximal objective values on the Pareto front [Knowles and

Corne (2003)], we simply treat it as infinite. As shown in Lines 2-4 in RECT, only a; is

D ol

mapped into 1, while 400 is mapped into { + 1—‘. So, the rectangles are open if its “coor-

dinates” contain {e% + 11, e.g., [1,6]7 and [6,1]7 in Figure 2. In Line 2, scale; is calculated

(max)

i

(max)

i

according to the difference between a and a . The farther away a is from a; ,

the larger the scale; value is. Furthermore, this scale, together with the constant of 1 in Line 4,
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Figure 3: Illustration of adaptive rectangles who change their location and shapes in the objective
space as the objective vectors in the archive A®) change through iterations t; < t; < ty. The
curve indicates the Pareto front, pentagrams indicate archived solutions, small discs indicate

min,t)

al , and small circles indicate a(ma:t),
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Procedure 3 INSERTINRECT(y, A(@7¢) A(min))

1. D :={a e A9 REcT(y, A™") < RECT(a, A™M)};
2. if D # () then
3. Alare) .— (Alare) | Jy )\ D; /* INTERRECTDOM */
4. else if 3a € Al@°) : (REcT(a, A™™) = RECT(y, A™™)) A(y < a) then
5. Alare) .= Alre) | J{y1\{al /* INTRARECcTDOM */
6. else if Ya € A@) : REcr(a, A™™) ~ RECT(y, A™M))
7. Alare) .= Alare) | J{y} /* OCCUPIES a rectangle */
8. else
9. Alare) .— fglare). /* STEADYSTATE */
10. end if
enables az(mam) to be mapped to [e%—‘, e.g., b in Figure 2. It is next to the “coordinate” corre-

sponding to +o0o. Therefore, when e; < 7, agmm), agmm), and +oo are mapped into different

i and a(mw). The less

rectangles. Furthermore, there are ({621 — 1) rectangles between a i

e; is, the more finely the crucial region is partitioned. An example with e; = {5 is illustrated in
Figure 2. The open region is enveloped by some open rectangles, which are indicated by dashed
line segments. Finally, the crucial region is finely partitioned, and a well-distributed Pareto

optimal solutions are archived in A which are indicated by pentagrams in Figure 2.

5 Theoretical analyses

We now give some theorems to show that the archive of ARA converges to Pareto optimal sets
under appropriate conditions, and at the same time preserves diversity of solution. We first give
theoretical analyses on each iteration of Procedures 2 and 3.

The following theorem shows that the lower boundaries of archive A® | i.e., a(™"™b  retain

the minimal objective values generated so far.
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Function 4 REcT(y, Amm)

1. for allic{l,--- ,m} do

tan( Z —e;
2 Sca‘lei = a("”“:’;)ia("”)i") ’
3 oy 1= arctan ((yZ — al(-mm)) * scalei); /* Arctangent transferring function */
4. ri=1+ {‘;—21 ; /* Rectangle’s it “Coordinate” */
5. end do
6. output: returnt = [ry, -+ 7y,

-
Theorem 2 Let Y7 = | J{y(®} be the set of objective vectors generated by EVOLUTION. Then
t=1
the archive A7) contains the minimal objective values of Y 7). That is, az(-mm’T) =, r{1in {yi(t)}-
1y
Proof: We need to prove two different cases:
Case 1. the minimal objective values generated-so-far will enter the archive;

Case 2. the objective vectors with the minimal objective values in the archive will not lose.

Since A1) ig a part of A®), we only need to prove these two cases based on A™mimt),

For Case 1, we only need to prove agmm’t) = yz-(t) when a smaller objective value is gen-
erated for any ¢ € {1,---,m} and t < 7, i.e, when yz(t) < agmm’t*l). On this iteration,

we have (y® <amint=1) or (y® ~ almmi=1)  Since agmm’t*l) = agi’tfl), we have either

(y(t) < a(i’tfl)) or (y(t) ~ a(i’tfl)). If y® < alt=1 then y® < AMmint=1) and the operation
DOMINATES, executes. When y®) ~ a(bt=1) if y(t) < q(mint=1) thep y(t) < gmint=1) _ 5(it—1)
(or = a(i’tfl)). It contradicts y® ~ alt*=1 Thus, y® ~ a(™mt=1) and the operation RECEDES

executes. For both situations, at) = y(®) . Thus, al(.mm’t) = yi(t).

Emin,t) _ a’gmin,t—l) if a’gmin,t—l) < yl(

For Case 2, we have to prove a Y for any i € {1,--- ,m}.

I agmin,t—l) < yi(t)’ 2D yz(t)

(2

and then y® # a(®)_ Thus, both DOMINATES and RECEDES

it) — plit=1) Tf az(min,tfl) )

will not execute, and al =y, , only the operation DOMINATES may

(min,t) (min,t—1)
= a;

execute, which still leads to a; =

. The proof is completed. |
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According to Procedures 2 and 3, a new solution dominated by the archived solutions in
Amin) (or Al@re)) is impossible to enter A" (or A@¢)). Thus, any solution in A" (or
A7) cannot dominate other solutions in A" (or A(@¢)). As required by the conditions in

(min) (arc)

Lines 10 and 14 of Procedure 2, if a new solution is dominated by A , it cannot enter A .
Furthermore, according to the condition in Line 1 of Procedure 2, any solution dominating
Amin) will enter A" first before inputting into A, It means that a solution in A7)

also cannot dominate A( Thus, we have the following nondominated relations among the

solutions in the archive A = {A(mn) Alare)},

Lemma 1 Members of A®) are either nondominated or equal to one another, i.e., Va%, al € A®),

(@’ ~al)v(a’ = al).

Similar to that A(™"! retains the minimal objective values inputted so far in Theorem 2,

Alaret) collects the Pareto optimal solutions iteratively, as stated in the following theorem.

t
Theorem 3 The archive At is an E-Pareto set of Y(ot) £ { U {y(T)}} J Alereto) jf
T=to

Almint) — gminto) gnd ¢ >ty > 0; A® is an E-Pareto set of Y {to:t) | J Alminito) i Almin.t) —

A(min,to)

Proof: The second statement is a direct consequence of the first statement and Lemma 1.
Thus we only need to prove the first one.

m,t)

We consider an extreme scenario first: allt) = ... = al = a(mnt) At this iteration,

Alaret) can contain only y = a(™mt)  In fact, if y(€ A(arc’t)) #£ amint) then y ~ almint)

min.t) dominates all solutions

according to Lemma 1. However, this contradicts Theorem 2 that a
generated so far. So, A@ret) — {a(mi"’t)} dominates, and then E-dominates, the solutions
generated so far. The theorem is correct.

Note that each update on A4 (either DOMINATES or RECEDES), A(*%!) will be updated

by using Procedure 3 with the new A(™"!) (as required by RE-FORMS A(@) in Procedure 2).
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So we can consider Procedure 3 by simply assuming A(@7¢%0) = ().
If the statement A(@7et) ¢ Px(Y(tot)) is not true, for some t; > to. According to Defini-

tion 5, there are two possible cases, which will be proved impossible below,
Case 1. Some y(™) (75 < t1) is not E-dominated by any member of Y (?0:#1) and not in Al@ret),

Case 2. Some y(™) (15 < t;) is in A1) but E-dominated by one member of Y (t0:t1),

(areit1) it can either have been rejected at ¢t =

For the first case, for y(™) not being in A
79 or accepted at ¢t = 73 and removed later on. However, removal only takes place when
some new y(™)(t; > 7 > 1) enters A(®%™) which dominates y(™) (INTRARECTDOM) or
RecT(y(™), Aminm)y < Recr(y(™), A1) (INTERRECTDOM). When A1) doesn’t change
during [to,t1] as assumed by the theorem, both dominance relations are transitive. In addition,
they both imply E-dominance. Thus, there will always be a member of A(@¢t) that E-dominates
y(™) which contradicts the assumption. On the other hand, y(™) will be rejected only if there
is another a(® ¢ A(@em) with a(® < y(™) or REcT(al®), AMm70)) < RECT(y (™), Almin.m0)),
When A"t doesn’t change during [t,t1], both dominance relations are transitive. With
the same argument as above, there must exist a solution a € A@¢%) gsuch that a < y(™) or
REcT(a, Amnh)) < RecT(y(™0), Amnt)) - Both imply E-dominance, which contradicts the
assumption that y(™) is not E-dominated by any member of Y (tfo-#1),

For the second case, since y(™)(e A(7¢70)) is not in the Pareto front of Y (0%1) | there exists
y(™) with to < 71(# 79) < t; on the Pareto front of Y *0#1) such that y(™) < y(™)  This implies
Rect(y(™), Aminm))y < Rect(y(™), Aminm)) or (RECT(y(™), A(minm0)) = RECT(y(70), A(minm) A
y(™) < y(™)). Hence, if 71 < 75, y(™) would not have entered the archive A(47¢7) (STEADYSTATE).
If 7 > 7, y(TO) would have been removed from A7) when t = 7 (INTERRECTDOM or

INTRARECTDOM). Thus, y(™) is not in A(@7¢#) which contradicts the assumption. This com-

pletes the proof. |
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Theorems 2 and 3 state that, the archiving strategy ARA is quite greedy and it retains the
minimal objective values and the E-Pareto optimal solutions of the objective vectors inputted
so far. The archive retains the “best-so-far” solutions, and this feature enables the MOEA using
ARA to be stopped anytime. Using these features of ARA, we give the convergence results that
ARA reaches a good crucial region, and then E-dominate the whole Pareto front based on a

weak assumption on EVOLUTION.

Theorem 4 If the function EVOLUTION gives every possible solution in the decision space with

a positive minimum probability, then, with probability one as t — +oo,

1. the lower boundaries of archive A®) of ARA, a™™t)  converge to the minimal objective

values of the whole Pareto front, and

2. {ADY converges to a Pareto optimal set
{aie o m) | (o = miplod ) nasy vary €Y A =a) }. @
y

Proof: 1. Since EVOLUTION can generate every possible solution with a positive minimum
probability, according to the Borel-Cantelli Lemma (see e.g., [(Feller, 1976, p. 201)]), it is
guaranteed that any solution is generated infinitely often and that the waiting time for the first

occurrence as well as for the second, and so forth is finite with probability 1. Thus, for any

(t:)

i € {1,---,m}, there exists t;(< +o00) such that y,*’ = ;ng/l{yz} According to Theorem 2,

. . A
al(-mm’t) = min{y;} for all t > t;. Therefore, when t > 7., = max {¢;}, each element of
yey ie{1,--,m}

a(mint) reaches the minimal objective value of the objective space and will not change again.

2. If At (¢ > 1. is not Pareto optimal in Y, there must exist y*(€ Y*) such that

(y* < a@)A <y;‘ = az(-i’t) = ;ng}r/l{yz}) for some i. There must exist t,, (> t) such that y(fe:) = y*.

Thus, y(ei) < albtei=1) and then y(tei) < Altei=1) Thus, DOMINATES of Procedure 2 executes,

; . A ; .
and a(®o: =) is replaced by y(*/). Oncet > 7., = max {to; } A(mint) reaches a Pareto optimal
Z1m

)

set as described in Eq.(9).
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Once A1) ig Pareto optimal in ¥ and each member at least has a minimal value on one

objective, there is not a vector y that either dominates A8 or y; < agi’t)

. The condition
in Line 1 of Procedure 2 cannot be satisfied. Neither DOMINATES nor RECEDES executes.
Therefore, A1) hecomes stable. This completes the proof. |

A direct consequence of Theorem 4 is that a(™*®) converges, so does the crucial region. It

(mazt) agmm’t) for 1 < i < m because at least two different values

is worth pointing out that a;
in each objective are assumed to be on the Pareto front. The assumption about EVOLUTION
is quite common in theoretical analyses of evolutionary algorithms [Knowles and Corne (2003);
Rudolph and Agapie (2000)]. It is true whenever, for example, a mutation is applied to every
bit in a binary string with some small probability, the standard method of generating a new

solution in a random mutation hillclimber [Knowles and Corne (2003)]. Based on this weak

assumption again, we give the main convergence result of our archiving strategy below.

Theorem 5 If EVOLUTION gives every possible solution in the search space with a positive
minimum probability, the archive sequences {A(‘”"C’t)} and {A(t)} of ARA converges to bounded-

sized E-Pareto sets of the whole objective space with probability one as t — 400, i.e.,
o Aloret) AW ¢ pr(Y);

02<‘A(amt ﬁ[i -‘

|N<>a

w for any given e with 0 < e; < 7.

max
ie{1,-

i
e 2< ‘A(t)| <m+ —=1——— for any given e with 0 < e¢; < Z.
St J%HW
ic{l,-,m i

Proof: According to Theorem 4, A"t converges to a Pareto optimal set when ¢ > Tep- 1IN
addition, according to Lemma 1, the members of A®) = {A(mnt) Alare)Y don’t dominate each
(arcit)

other. Thus, we can prove directly the statement about A® based on the one about A

We only prove the statement about A% below.

26



According to Theorems 3 and 4, A(@%7) is an E-Pareto set of { LTJ {y(t)}} U Alareres),
t=7c

EVOLUTION generates any solution infinitely often and that the waiting t2ime for the first oc-
currence as well as for the second, and so forth is finite with probability 1, so, for each solution
y €Y, there exists ty (7., < ty < +00) such that y*) = y. Then A@"*%) must E-dominate y.
Since |Y| is finite, 7., = r}]}nea%{ty} < 400. Thus, A1) is an E-Pareto set of Y as t > 7.

According to the proof of Theorem 3, for each solution y E-dominated by A there
must exist a € A such that REcT(a, A™™) < RECcT(y, A™™) or RECT(a, A™™) =
RECT(y, A(mm)). When t > 7,, Amint) hecomes stable and agmm’t) < agmax’t) fori=1,---,m.
According to Function 4, the “coordinates” of these rectangles occupied by the members of
Amint) must have two different values: 1 and [:%-‘ for each objective. When t > 7., Aot
E-dominates A That means the “coordinate” of the rectangle occupied by every member
of At must be dominated or equal to the “coordinate” of the rectangle occupied by one
member of A(@et) Then A@ret) has at least two members. Otherwise, if A7t has only one
member a, REcT(a, A™™) = [1,1,--- ,1]7. This leads to a = a(™™!)  Then a < At
which contradicts Theorem 2. So, ‘A(‘m’t)‘ >2ast — +oo.

As we can observe in Function 4, the i"® dimension (objective) is divided into [e% + 1—‘ seg-
ments. The objective space is divided into ﬁ Lii + 1-‘ rectangles in total. From each rectangle,

i=1

at most one solution can be in A(@%Y at the same time. Now consider the equivalence classes
of rectangles where, without loss of generality, the rectangles in each class have the same “co-

ordinates” in all but one dimension. There are at most max [ei + 1-| different rectangles in

=1, ,m
each class constituting a chain of dominating rectangles. Hence, only one solution from each of
these classes can be a member of A1) at the same time. This completes the proof. |

This theorem states that the archive of ARA can finally E-dominate the whole Pareto front.

It also states that the archive size is bounded, given an appropriate vector e. In addition, there
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are at least two different Pareto optimal solutions in the archive. This point is different from

the e-Pareto set, which sometimes retains only one solution [Laumanns et al. (2002)].

6 Conclusion and discussion

In this paper, we have introduced the E-Pareto set as a novel concept for evolutionary mul-
tiobjective optimization. It is theoretically attractive as it helps to construct algorithms with
the desired convergence and distribution properties, and it generalizes the dominance concepts
in the Multi-Objective Evolutionary Algorithms (MOEAs) literature. Moreover, it is practi-
cally important as it works with Pareto fronts of bounded size without prior knowledge about
optimization problems.

We have constructed the Adaptive Rectangle Archiving (ARA) archiving strategy that can
be used in MOEAs. It can maintain the minimal objective values and well-distributed Pareto
optimal solutions among the solutions generated so far in the sense of E-dominance (Theorems 2
and 3).

Our archiving strategy, with an appropriate assumption on the solution generation procedure,
can retain the minimal objective values and a well-distributed approximation of the whole Pareto
front with probability 1 in the sense of E-dominance (Theorems 4 and 5).

When the knowledge about the distribution of the Pareto front is not available, an end
user can easily set an appropriate vector e, and then ARA can provide a representative, well-
distributed Pareto optimal set. So, our archiving strategy complements the existing ones.

Our archiving technique is based on the arctangent transferring function, but the underlying
principle is easily applicable to other transferring functions. For example, we may use a new
transferring function and design a different RECT function to treat different solution regions more

uniformly. We will study this topic and its applications on benchmark and real-life problems.
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Our theoretical analyses have assumed a bounded-sized objective space, but the E-Pareto set
and the E-approximation Pareto set concepts are also applicable to more complicated real-life
problems, such as multiobjective data mining problems [Jin et al. (2003)]. Another interesting
research direction is, following the adaptive grid archiving algorithm, to design a new archiv-
ing algorithm which always maintains a fixed-sized, well-distributed archive. These topics are

subject to our future research interest.
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