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ABSTRACT 

Customer Selection for Direct Marketing:  

Bi-Objective Optimization Using Support Vector Machine 

by 

WANG Qian 

Master of Philosophy 

A major challenge in direct marketing is to build a customer-selection model that can 

help achieve higher response rate and greater profit at the same time. In this study, I 

adopt a bi-objective optimization (BOO) approach and propose a two-stage method 

using support vector machine (SVM) and support vector regression (SVR) to 

maximize response rate and profit simultaneously. To deal with the difficulty of 

learning models from imbalanced data, synthetic minority over-sampling technique 

(SMOTE) is used to generate more balanced datasets. Experiments are conducted on 

two datasets, a direct marketing dataset and the KDD-98 dataset, to compare the 

predictive performance of the two-stage BOOSVM with other benchmark methods 

including logistic regression and the parallel Multi-objective Evolutionary Algorithm 

(MOEA). The results of decile analysis suggest that the proposed two-stage 

BOOSVM model with SMOTE method is more effective and efficient than the 

competing models in improving response rate and profitability. 
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Customer Selection for Direct Marketing: 

Bi-Objective Optimization Using Support Vector Machine 

 

Chapter 1. Introduction 

As marketing has become more competitive and customer needs have become 

more diversified, corporations face unparalleled challenges. Generally there are two 

approaches for enterprises to advertise and promote: mass marketing and direct 

marketing. Mass marketing, which traditionally focuses on the media of radio, 

television and newspapers, aims at reaching a broad audience without discrimination. 

It used to be an effective way of promotion when the products were in great demand 

by the public. However, because nowadays the marketplace is increasingly 

competitive with an overwhelming variety of products and marketing methods, mass 

marketing has gradually turned less effective and less popular.   

In recent years, a huge amount of customer data is available to companies at an 

unprecedented speed. The data are kept in databases and contain different types of 

information including customer purchase history and some demographic information 

and other customer personal characteristics such as profession, age, sex, etc. These 

data can be used to select a right subset of customers so as to maximize the profit 

return as well as to maintain direct relationship with customers. This type of 

marketing is referred to as direct marketing, which is a channel-agnostic form of 

advertising that allows businesses and nonprofit organizations to communicate 

directly with customers. The advertising tools for direct marketing include phone call, 
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text messaging, email, interactive consumer websites, online display ads, fliers, 

catalog distribution, promotional letters, and outdoor advertising. The superiorities of 

direct marketing are obvious in many aspects, for example, shopping convenience, 

technological advance, the possibility to reduce cost for customers and companies. A 

more detailed description of direct marketing is as below. 

 

1.1 Direct Marketing  

The origin of direct marketing dates back to the nineteenth century and it was 

firstly used in mail order industry in the United States (Brandweek, 2009). Nowadays, 

direct marketing plays a broader role to satisfy customers' ever-changing needs and it 

can be successfully and effectively assisted by various sophisticated techniques. 

Direct marketing has made it convenient for marketers to communicate directly with 

their customers, and its feature of measurable result is attractive to many marketers. 

Meanwhile, changes in tastes and media fragmentation have made conventional mass 

marketing less effective in getting the response from customers, although mass 

marketing is still quite significant in sustaining brands (Bose and Chen, 2009).  

Direct marketing has become more and more popular these days, evidenced by 

the data on its remarkable growth. For example, Direct Marketing Association 

reported in 2010 that a total $153.3 billion was spent on direct marketing by 

commercial and nonprofit marketers, and the monetary amount accounted for 54.2% 

of all advertising expenditures in the USA. In addition, direct marketing accounted 

for 8.3% of total US Gross Domestic Product in 2010. In the same year, direct 

http://en.wikipedia.org/wiki/Direct_Marketing_Association_(USA)
http://en.wikipedia.org/wiki/Marketers
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marketing provided job opportunities for 1.4 million employees in USA, as well as 

another 8.4 million other employees in direct marketing related jobs. 

Because of the growing popularity and remarkable performance of direct 

marketing, academic researchers become more interested in direct marketing. 

Sophisticated techniques can help marketers formulate effective direct marketing 

strategies. Elsner et al. (2003) report that direct marketing companies continue to 

increase their market shares after they adopt a direct modeling approach called 

Dynamic Multilevel Model.  

Some traditional statistical methods and data mining models are popular for 

developing strategies in direct marketing. Traditional statistical techniques are the 

most common ones in direct marketing. Regression, a basic statistical technique, is 

widely used, but it is limited in analytical capabilities. Linear regression models and 

logistic regression models have been commonly adopted in direct marketing. The 

former ones can be used to produce continuous scores, while the latter ones can be 

used to perform binary classification (Bult et al., 1997). Another technique used in 

direct marketing is data mining, which is narrowly defined as the automated 

discovery of "interesting" but non-obvious patterns hidden in a database (Peacock, 

1998) and the core of the knowledge discovery and data mining (KDD) process 

(Fayyad et al., 1996). Nowadays, many businesses can generate and collect a huge 

amount of data in a relatively short period. The explosive growth of data requires a 

more efficient way to extract useful knowledge. Thus marketing is a major area for 

applying data mining techniques (Shaw et al., 2001). 
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1.2 Direct Marketing Dataset 

Due to the saturated market and intensive competition, many companies realize 

that their firm databases are one of their most valuable assets (Athanassopulos, 2000; 

Jones et al., 2000). Nowadays, large amounts of data about customers' information 

are available to companies, and these data can be used to establish and maintain a 

direct relationship with customers in order to target them individually for specific 

product offers and services. Companies can also update their databases by making 

solicitations and transactions with customers, so they regard the communication 

experience with customers as great opportunities to collect valuable data (Rygielski 

et al., 2002).  

In direct marketing, two types of data about customer characteristics are 

typically used. The first type of data is referred to as external data (Van der Sheer, 

1998), including geographics, lifestyle and demographics; the second type is 

regarded as customers’ interactive behaviors, including customer transaction records, 

web browsing records and feedback from customers (Bult, 1993).  

 

1.3 Customer-Selection Model in Direct Marketing 

For direct marketing companies, sending product offers to all customers in the 

database is impossible due to budgetary constraints. Thus, it is only necessary to 

contact only those customers who are the most likely to be interested in the offer, 

because the costs of such a full-scale mailing campaign are too large to satisfy the 

budget constraint. In addition, sending many uninteresting product offers to 
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customers is not only undesirable to customers but also harmful to the relationships 

between companies and their customers. Hence, customer selection problem should 

be solved by considering how to select the customers who are interested in their 

offers.    

An effective identification of likely responders involves skillful and powerful 

analysis of customer database for selecting customers. Thus, a major task in direct 

marketing is to develop a model for customer selection, and the model performs 

mapping from attribute vectors characterizing potentials responders to marketing 

target vectors. An effective customer selection model will increase a firm's profit, 

while an ineffective one will increase the marketing cost and worsen the customer's 

relationship with the firm (Potharst et al., 2000). Data availability and effective 

methodology are important factors for the success of customer selection models. By 

utilizing the large dataset, statistical or data mining techniques can be used to predict 

potential customers  

  

1.4 Multi-Objective Optimization Problem in Direct Marketing 

The evaluation of customer selection models in direct marketing is usually done 

on the basis of response rate (accuracy) and profit. Response rate is the ratio of the 

number of responders over the total number of customers in the sample. A survey's 

response rate has been viewed as an important indicator of survey quality for many 

years and the conclusion that higher response rates always ensure more accurate 

survey results is supported by many studies (Rea and Parker, 1997). However, direct 
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marketers would like to know not only responders but also profitable customers who 

will spend more money than others, because profit is the most direct metric to 

measure return on marketing. High-profit customers are the minority class and it has 

a smaller effect on response rate but a more significant effect on revenue. If all the 

low-profit responders are selected, the response rate may be quite high, but the 

revenue may not be good enough. In other words, good response models may not 

help generate greater profit. Therefore, besides the classification function, customer 

models also need regression functions to predict customer profit. Some models can 

be used for both classification and regression are referred to as two-stage models, 

which are constructed by the combination of two different models, taking advantage 

of each model and overcoming the weaknesses of both ones. Usually these two-stage 

models score the probability of response in their first stage and then score the 

monetary value of customers in the second stage. Two-stage models can realize the 

optimization of the both objectives respectively in the two stages. However, up to 

date, these models view the two objectives as two separate parts and neglect the 

relationship between them. Thus, a bi-objective (response rate and profit) 

optimization model to maximize the response rate and return simultaneously for a 

direct marketing solicitation seems to be necessary and significant. 

    

1.5 Resource Constraint in Direct Marketing 

In marketing, most of the revenue and profit is produced by the top deciles of 

customers and marketing budget for promotion is always limited in that only a 
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fraction of customers in the dataset can be and also should be selected. Decile 

analysis is widely used for data analysis at different depths-of-file. In decile analysis, 

individuals are ranked in a descending order by their respective model scores (higher 

scores indicating better performance), and then individuals are categorized into 10 

groups with the same size. In addition, the results of this series of analysis are 

evaluated using the measure “lift”. Lift is a measure of the performance of a targeting 

model against a random choice targeting model, and a higher response rate means 

that the response rate for the target group is much better than the average response 

rate for the population as a whole. Lift is simply the ratio of these values: target 

response divided by average response. In other words, “response lift” is the ratio of 

the number of true positives to the total number of records identified by the classifier 

in comparison with that of a random model at a specific decile of the file 

(Bhattacharyva, 1999). For instance, a lift of 200 indicates that a specified model 

performs twice as well as a random model. In other words, lift measures the 

improvement of proposed models in response and/or profitability over a random 

model at a specific depth of file. The Average Cumulative Lift (ACL) at specific 

depths of file provides a measure of improvement over a random model, and it is 

calculated as follows:  

  100decile
decile

cumulative average profit
Average Cumulative Lift

overall average profit
  .   (1.1) 

Thus, we compare the performance of models across the top deciles using 

cumulative lifts. In my study, I use two types of ACLs, which are the average 

accumulated response rate lift (AARL) and the average accumulated profit lift 

http://en.wikipedia.org/wiki/Model_(abstract)
http://en.wikipedia.org/wiki/Model_(abstract)
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(AAPL). AARL and AAPL are both chosen as metrics of model performance in my 

experiments. The two ACLs are described in detail as follows, 

  100decile
decile

decile

cumulative average response rate lift
AARL

overall average response rate lift
  ;           (1.2) 

 100decile
decile

decile

cumulative average profit lift
AAPL

overall average profit lift
  .              (1.3) 

AARL is simply the ratio of two values: the obtained average response probability of 

a certain model divided by the average response probability of randomly selection. 

Similar to that, AAPL means the following ratio: the average profit obtained by using 

a certain model divided by the average customer profit obtained by randomly 

selection. Thus, higher AARL and/or AAPL mean it is more effective to select 

customers by using the model. 

 

1.6 Support Vector Machine 

    Support Vector Machine (SVM), a supervised learning model, is increasingly 

attractive because of its solid statistical foundation and effective performance in 

various areas (Osuna et al., 1997), including object recognition, handwriting 

recognition, face detection, speaker identification, and text categorization (Burges, 

1998). Recent studies have shown SVMs' distinct advantages such as better 

generalization, increased speed of learning, improved ability to find a global 

optimum and the ability to deal with linearly non-separable data. In addition, SVMs 

can handle and evaluate data points fast, without losing the degree of accuracy 

(Candade, 2004).  

http://en.wikipedia.org/wiki/Supervised_learning
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    The current standard soft-margin SVM is originally proposed by Vapnik and  

Cortes in 1995. Then in 1998 they receive the Paris Kanellakis Theory and Practice 

Award for their development of support vector machine (SVM), which has proved to 

be a highly effective algorithm for supervised learning. SVMs belong to a family of 

generalized linear classifiers and can be interpreted as an extension of the perceptron, 

which follows a form in that an input is assigned into one of several possible 

non-binary outputs. An SVM is constructed by seeking the maximum-margin 

classifiers, which minimize the empirical classification error as well as maximize the 

geometric margin simultaneously. Comparisons of SVMs with other classifiers have 

been made by Meyer et al. (2003). In their study, they compare a popular SVM 

implementation (LIBSVM) with 16 classification methods and 9 regression methods. 

Among them, SVMs show better performances on both classification and a 

regression task, however, the superiority is not significant.  

The advantages of an SVM in learning patterns from datasets come from three 

points. First, only two types of free parameters, the upper bound and the kernel 

parameter, are needed to be chosen in an SVM and this process is also quite 

practicable. Second, because the training of a SVM is done by solving a linearly 

constrained quadratic problem, the solution of an SVM is unique and has a better 

chance of finding the global optimum. As a result, over-fitting problem is unlikely to 

happen in SVMs. Third, conventional neural networks are based on Empirical Risk 

Minimization (ERM) principle, so as to minimize misclassification errors and 

deviation from the optimal fitting of the training data. On the contrary, SVMs' theory 

http://en.wikipedia.org/wiki/Corinna_Cortes
http://en.wikipedia.org/wiki/Corinna_Cortes
http://en.wikipedia.org/wiki/Paris_Kanellakis_Award
http://en.wikipedia.org/wiki/Paris_Kanellakis_Award
http://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Margin_classifier
https://en.wikipedia.org/wiki/Margin_classifier
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embodies the Structural Risk Minimization (SRM) principle, in which the classifiers 

can minimize an upper bound of generalization error. The SRM principle can assist 

SVM to avoid the over-fitting problem by balancing the model's complexity against 

its success at fitting the training data. 

 

1.7 Research Gaps in Existing Research  

The evaluation of customer selection models in direct marketing is usually 

achieved on the basis of response rate (accuracy) and profit. Response rate is the 

ratio of the number of responders over the total number of customers in the sample. 

Till now, many response models have been built with various techniques in direct 

marketing. These response models can be used for direct marketers to reach higher 

response rate. However, direct marketers would like to reach not only responders but 

also profitable customers who will spend more money than others, because profit is 

the most direct metric to measure performance. Thus, targeting customers only with 

response models is not enough and cannot ensure greater profitability, since response 

models tends to ignore high profit customers, which are the most valuable to 

companies. Considering the importance of profit, some customer selection models in 

direct marketing are based on profit in that profit is the only metric to measure the 

performance of a certain customer selection model. However, similar to the response 

models, these profit models also target a single objective, which are not enough to 

measure direct marketing performance.  

Some other customer selection methods in direct marketing can be used for both 
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classification and regression, which are referred to as two-stage models. These 

models are constructed by the combination of two different models. Usually these 

two-stage models score the probability of response in its first stage and then score the 

monetary value of customers in the second stage. Two-stage models can realize the 

optimization of the both objectives respectively in the two stages. However, up to 

date, these models view the two objectives as two separate parts and neglect the 

relationship between them. Thus, in direct marketing solicitation, a bi-objective 

(response rate and profit) optimization model to maximize the response rate and 

profitability simultaneously is quite necessary. For this reason, I propose a two-stage 

BOOSVM model to realize the bi-objective optimization problem. 

 

1.8 Organization of the Thesis 

    Nowadays, direct marketing has proved its benefit given countless successful 

applications. It has attracted much attention from academics with an increasing 

number of studies in this area. How to target customers is the core problem in direct 

marketing. Customer selection models can help to solve this problem properly. 

Because a customer selection model's performance should be evaluated on both 

response rate (accuracy) and profit, customer selection problem can be seen as a 

bi-objective optimization problem. However, most studies on customer selection pay 

attention to only response rate. Profit models as well as bi-objective optimization 

models are rare. To solve this problem, this study proposes a bi-objective 

optimization model for customer selection. Data mining technique can help 
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marketers extract meaningful knowledge to improve efficiency and quality of their 

customer selection strategy. Among various data mining techniques, SVM is 

increasingly attractive for its solid statistical foundation and effective performance in 

various areas. Therefore, in this study I adopt the SVM method to search for a proper 

customer selection model to solve the bi-objective (response rate and profit) 

optimization problem in direct marketing. The remaining of this thesis is organized 

as follows. 

Chapter 2 provides an integrative review of the related work on previous 

customer selection models and various techniques applied in direct marketing. 

Chapter 3 represents an introduction to the basic theory of SVM technique, the 

deduction process of the two-stage BOOSVM model, and the related techniques used 

in the two-stage BOOSVM model.   

Chapter 4 discusses the algorithm and the datasets used in this thesis.  

Chapter 5 contains the experiments with two-stage BOOSVM model and the 

other two benchmark models: logistic regression and MOEA, and the comparisons of 

results from two different datasets.     

Chapter 6 includes the conclusions and discussion of its implications, practical 

applications, limitations and directions for future research. 
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Chapter 2. Literature Review 

 

    The Direct Marketing Association (DMA) defines direct marketing as 

"communications where data are used systematically to achieve quantifiable 

marketing objectives and where direct contact is made, or invited, between a 

company and its customers and prospective customers" (Mullin, 2002). The 

definition obviously implies the importance of customer segmentation and 

personalized advertising.  

    The use of direct marketing advertising is growing at a fast pace. The 

emergency of the Internet has largely decreased the operation cost for direct 

marketers, which can consolidate the success of direct marketing campaigns. In 2005, 

the average rate of direct marketing expenditures is 14.6% in Germany, 73.6% in the 

UK, and 5.5% in France (Barwise and Farley, 2005). The growing popularity of 

direct marketing has aroused academic interest and research in this area. Abundant 

and sophisticated direct marketing models can help decision makers build reasonable 

strategies and assist marketers in conducting effective direct marketing solicitations. 

It is reported that a direct marketing company, Rhenania, successfully increases its 

market share after their implication of Dynamic Multilevel Modeling approach 

(Elsner et al., 2003).  

    Nash (1984) proposes four successful elements of a direct mail campaign, which 

are timing, offer, communication, and selection of customers. Among these elements, 
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selection of customers is critical in determining whether direct marketing activity is 

successful. Thus, in direct marketing, an important research question is: what 

techniques should be used for building models for customer selection? Usually 

traditional statistical and data mining techniques are used for selecting customers in 

direct marketing.  

 

2.1 Traditional Statistical Techniques for Direct Marketing 

Conventionally, many statistical methods have been applied to quantitative 

modeling, and many of these methods are regression techniques. Traditional 

statistical techniques include regression models and the RFM model. Table 2.1 shows 

some of the literature about traditional statistical techniques used in direct marketing 

and the application details of each technique are described in the following section.  

Table 2.1. Direct marketing studies using traditional statistical techniques 

Traditional statistical techniques Representative studies 

Linear regression Levin and Zahavi (1998), 

Malthouse (1999) 

Logistic regression Bult and Wansbeek (1995), Bult et al. (1997), 

Levin and Zahavi (1998), Heilman et al. (2003) 

Bodapati and Gupta (2004) 

RFM model Colombo and Jiang (1999), Yeh et al., (2009), 

Bult and Wansbeek (1995) 

 

2.1.1 Linear Regression 

In statistics, linear regression is an approach to model the relationship between a 

dependent variable y and an independent variable set X. Results of linear regression 

are predicted by the linear predictor functions, and the unknown parameters of the 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Linear_predictor_function
http://en.wikipedia.org/wiki/Parameters
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linear predictor functions' are learned from given data. Linear regression is one of the 

early regression models, which can be used to generate continuous scores. A 

threshold is usually set before selecting target customers based on the scores given 

by a linear regression model. If a customer's score is higher than the threshold, then 

the customer is selected, and vice versa. The proportion of the selected customers 

from all the customers is referred to as the regression model's response rate (Bose 

and Chen, 2009). Levin and Zahavi (1998) use a linear regression model to predict 

customers' response based on three measures: profitability analysis, goodness-of-fit 

criteria and predictive accuracy. Malthouse (1999) uses another linear regression 

model to estimate how much a customer will spend on an upcoming offer. 

 

2.1.2 Logistic Regression 

An explanation of logistic regression begins with the logistic function, which 

always takes on values between zero and one: 
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A graph of the function f is shown in Figure 2.1. 

http://en.wikipedia.org/wiki/Regression_analysis
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Figure 2.1. The logistic function, with 0 1
x  on the horizontal axis on ( )x on 

the vertical axis. 

Here the occurring event indicates whether the customers respond to the 

promotion or not, and the likelihood function is built from the customer dataset. With 

the function constructed, parameters of all attributes can be obtained according to 

Maximum Likelihood Estimation (MLE) principle (Linder et al., 2004). Then a 

logistic function can be built to estimate the response probabilities of each individual.  

Most textbooks cover logistic regression as the basic method due to its 

simplicity and explanatory ability (Hosmer and Lemeshow, 1989). Because the 

response variable is discrete, it will be much easier to construct models with logistic 

regression. In direct marketing, logistic regression models are commonly used to 

predict potential customers. Sen (1990) proposes to use logistic regression to search 

for a proper number of attributes for analysis in response modeling. Malthouse (1999) 

suggests combining ridge regression with stepwise regression to search for a proper 

number of attributes for response modeling. Naik and Tsai (2004) find that, in small 

databases, marketers could calibrate logistic regression models via 

maximum-likelihood methods to determine significant variables and assess 

customers’ response probability. 
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However, direct marketing datasets are updated with new information 

constantly as more customer information variables are stored. The application of 

logistic regression method may suffer from some problems. First, the application of 

Maximum Likelihood Estimation (MLE) may fail in the dataset with a large number 

of predictor variables due to the lack of convergence, large estimated coefficient 

variances, poor predictive accuracy, and the reduced power for testing hypotheses 

concerning model assessment (Genkin et al., 2007). Second, even if such numerical 

problems can be avoided, the asymptotic properties of maximum likelihood have a 

tendency to cause the over-fitting problem (Genkin et al., 2007). Third, because of 

the great possibility to neglect predictor variables during the variable selection 

process, one may encounter problems of model specification.  

 

2.1.3 RFM Model 

A simple Recency–Frequency–Monetary (RFM) value model is originally 

proposed by Colombo and Jiang (1999). It is a stochastic approach to rank (or score) 

customers. In the RFM model, recency represents the length of time period since the 

last purchase; frequency denotes the number of purchases within a specified time 

period; monetary value means the amount of money spent in this specified time 

period. In direct marketing, RFM information helps marketers to estimate the 

probabilities of customers to respond (Colombo and Jiang, 1999) and customer 

feedback is used by researchers to discover customers’ attitudes towards products 

(Bult et al., 1997; Ha et al., 2005). RFM model is also a behavior-based model to 
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analyze the behavior of customers and then to make predictions based on the 

information derived from the data selected beforehand (Yeh et al., 2009).  

The RFM model is widely applied in the direct marketing. Bult and Wansbeek 

(1995) extend the RFM method to Chi-square Automatic Interaction Detection 

(CH-AID) method in direct marketing. Colombo and Jiang (1999) present a simple 

stochastic RFM model to solve the problem about how to choose customers in the 

firm's database to target with an offer, which is a central problem in database 

marketing.  

The RFM model applies quite basic knowledge and it almost does not require 

any statistical software. But practically, the disadvantages of the RFM model are also 

quite obvious. In practice, customers’ purchase behavior is not determined by only 

three elements. On the contrary, many more variables may affect the performance of 

a response model, for instance, the demographic variables. Thus, the variables used 

in RFM models are not sufficient. In addition, since RFM variables are not 

necessarily mutually independent, they may have the problem of double counting 

(Bult and Wansbeek, 1995). Malthouse (1999) considers that RFM models can be 

susceptible to over-fitting problem. 

 

2.2 Data Mining Techniques Used in Direct Marketing 

Data mining is a non-trivial process of discovering novel, implicit, useful and 

comprehensive knowledge from large amount of data. By using the method of data 

mining, more non-obvious patterns and hidden knowledge in databases could be 

http://academic.research.microsoft.com/Keyword/9109/database-marketing
http://academic.research.microsoft.com/Keyword/9109/database-marketing
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discovered and applied in practice. Data mining techniques are quite efficient in 

solving classification and regression problems, and they are already used to deal with 

many marketing problems, such as predicting bankruptcy, loan default, and modeling 

consumer choice (Hu et al., 1999). In recent years, data mining techniques are also in 

the spotlight in the field of direct marketing and gradually gain their stable position 

in the area of targeted marketing. These techniques include but are not limited to 

decision tree, neural networks, and evolutionary algorithm.  

Table 2.2. Literature about data mining techniques  

Data mining 

techniques 

Representative studies 

Decision tree Haughton and Oulabi (1997), Ling and Li (1998), Freund and 

Schapire (1996) 

Artificial neural 

networks 

Zahavi and Levin (1997), Gruca et al. (1999), Kim and Street 

(2004), Ha et al. (2005), Kim et al. (2005), Shin and Sohn (2004) 

Evolutionary 

algorithm  

Yu et al. (2005), Bhattacharyya (1998), Bhattacharyya(1999), 

Bhattacharyya(2000), Dou et al. (2008) 

 

2.2.1 Decision Tree Methods 

 Decision tree learning is a method commonly used in data mining and its goal 

is to predict the value of a target variable with a tree-structure model based on 

several input variables. In a decision tree, internal node represents test on an attribute, 

a branch represents the outcome of a test and each leaf node stands for a class label. 

A tree-structure model can be constructed step-by-step by splitting the source set into 

classifications. This process is repeated on each division step with a so-called 

recursive partitioning method, which ends until all predefined input variables under a 

node are considered. This is a top-down induction process and a type of greedy 
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algorithm (Quinlan, 1986).  

Decision trees used in data mining area have two main types. The first type, 

classification tree analysis, is used when the predicted outcome is the class to which 

the data belong. The other one is the regression tree analysis in which the range for 

predicted outcome is a real number (e.g. the price of a house, or a patient’s length of 

stay in a hospital). There are many decision-tree algorithms and the notable ones 

include the term Classification and Regression Tree (CART) analysis, Iterative 

Dichotomiser 3 (ID3), a successor of IDS (C4.5), and CHi-squared Automatic 

Interaction Detector (CHAID). A comparison between CART and CHAID are 

conducted by Haughton and Oulabi in 1997. They compare the response lifts 

between the two approaches and find that although the two models are different in 

their tree-generating mechanisms, no remarkable changes are noted in the response 

lift. Another comparison between a Naïve Bayes response model and a C4.5 response 

model is given by Ling and Li (1998).  

    Various kinds of decision-tree algorithms have been used in direct marketing. 

Freund and Schapire (1996) conduct experiments on three direct marketing problems 

to improve the performance in response rate. In their research, they use a C5-based 

response model to classify responders and improve the classification quality rather 

than the accuracy of the response model by accommodating a better ranking. Cui et 

al. (2006) model consumer responses to direct marketing and compare the results of 

Bayesian networks with those of neural networks, CART, and latent class regression. 

Haskell (1993) suggests that large decision trees, in which each test sample can 
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propagate through all paths simultaneously, are typically pruned to provide better 

classification accuracy when used with test data. By using a stock market prediction 

example, he concludes that making a large fuzzy tree is an attractive alternative to 

pruning.  

However, there are some limitations for decision tree learning methods. First, 

practical decision-tree learning algorithms are based on heuristic algorithms such as 

the greedy algorithm in which locally optimal decision is made at each node. Such 

algorithms cannot guarantee that the global optimal decision tree can emerge. Second, 

decision-tree learners are prone to building over-complex trees, which do not 

generalize the data well and cause the over-fitting problem. Third, some concepts are 

hard to learn due to the difficulty in the expression of decision tree learning.  

 

2.2.2 Artificial Neural Networks  

An Artificial Neural Network (ANN) is a mathematical model inspired by 

biological neural networks and it consists of a large number of small computational 

elements imitating biological neural networks. The building block inside an ANN is 

called a perceptron/neuron, which computes a weighted sum of its (n + 1) input 

signals, and then passes the result through a nonlinear activation function. 

Mathematically, the output of a perceptron can be represented as  
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                    (2.4) 

where f  is a non-linear activation function, 
iw  is the weight associated with the 

thi  input, and 
0w  is a constant threshold (or bias) value.  
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The activation function is also referred to as a squashing function, which limits 

the amplitude of the output of a perceptron to a closed interval, e.g. [0, 1]. The 

operation of this function can be interpreted as a mapping from a linear space to a 

nonlinear space. So far, the most common form of the activation function is sigmoid 

function, which is defined as a mathematical function having an "S" shape (sigmoid 

curve). It is a strictly increasing function that exhibits smoothness and asymptotic 

properties. Usually, the sigmoid function refers to the special case of the logistic 

function, which is defined by the followed formula:  
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,                     (2.5) 

where a is the slope parameter and is used to determine the fuzziness of the decision 

boundary. 

ANN is good at learning nonlinear relationships between the input and output 

and it is the most popular data mining technique used in direct marketing. Zahavi and 

Levin (1997) employ ANNs in direct marketing with no prior knowledge or 

assumption about the error distribution. They prove that in some instances neural 

network model can improve the response rate up to 95% in direct marketing. Besides 

response prediction, ANN is also used for other purposes in direct marketing. Shin 

and Sohn (2004) combine ANN with data envelopment analysis techniques to predict 

the profitability of each customer. 

However, there are also some shortages for ANNs. It is proved that neural 

networks sometimes do not outperform simple logistic regression models. Indeed, it 

is often the case that a simple logistic regression predicts better than a neural network 

http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Logistic_function
http://en.wikipedia.org/wiki/Logistic_function
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(Zahavi and Levin, 1997). One major reason for this phenomenon is that a neural 

network model has to be built with great care and its performance is sensitive to its 

complexity, which is determined by the number of synapses or weight parameters. If 

a network is more complex than the network embedded in the dataset, then the 

network learns not only the underlying function but also the noise (Hansen and 

Salamon, 1990). In that case, the learning process will lead to the over-fitting 

problem, in which the learned function performs quite well on the training data, but 

fails to predict using the unseen testing data. 

 

2.2.3 Evolutionary Algorithm (EA) 

Another type of data mining techniques that continuously gain popularity in 

direct marketing is Evolutionary Algorithms (EA), such as Genetic Algorithms (GA), 

Evolutionary Programming (EP), and Genetic Programming (GP). EAs are inspired 

by biological evolution including selection, crossover, and mutation (Goldberg, 

1989). Fitness function determines the quality of the solutions. Evolution of the 

population then takes place after the repeated application of the above operators. GA, 

GP, and EP are suitable for optimization problems such as the selection of solicitation 

targets. EA technique is proved to be effective in solving a variety of problems that 

are difficult for other techniques. The application of EAs in direct marketing dates 

back to long time ago. Bhattacharyya (1998) presents a GA-based approach for 

developing response models to maximize performance at the desired mailing depth. 

Then Bhattacharyya (1999) presents a GA based approach for obtaining models with 

https://en.wikipedia.org/wiki/Biological_evolution
https://en.wikipedia.org/wiki/Fitness_function
https://en.wikipedia.org/wiki/Evolution
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explicit consideration of the mailing depth and performs experiments based on a 

real-life data set. Bhattacharyya (2000) proposes the use of evolutionary computation 

based procedures for obtaining a set of non-dominated models with respect to 

multiple stated objectives.  

However, there are several limitations for the use of an EA compared with 

alternative optimization algorithms. First, it will have some segment limitations in 

the part of repeating fitness function evaluation for complex problems. In complex 

high dimensional data, finding the optimal solutions may need quite expensive 

fitness function evaluations, which is time-consuming. For example, in reality, 

several hours may be required to deal with only one single function evaluation for 

the structural optimization problems. Second, EA-based approach is not good at 

dealing with complexity. Large number of elements that are exposed to mutation will 

often bring about an exponential increase in the size of search space. Moreover, the 

stop criterion of an EA-based approach is often not clear. Therefore, EAs are prone to 

converge towards local optimal or even arbitrary points rather than the global 

optimum.  

 

2.3 Customer-Selection Models in Direct Marketing 

2.3.1 Response Models 

    Indentifying likely customers of a product or service is an important issue in 

direct marketing. A survey's response rate has been viewed as an important indicator 

of survey quality for many years. It has been proved that higher response rates 
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always ensure more accurate survey results (Rea and Parker, 1997). To increase 

response rate, response models can help scholars and managers to understand how 

consumers respond to marketing activities individually and collectively (Hanssens et 

al., 2005). In a response model, the dependent variable is a two-dimensional variable 

representing response or not. Response models usually belong to classification 

models, aiming at improving predicative accuracy by inducing classifiers for a given 

dataset. The prediction is realized by scoring customer probabilities to purchase so 

that higher scored customers can be indicated with greater target preference. Good 

response models can select more responders in a firm’s database to reduce overall 

marketing cost without losing opportunities.  

Response models are seen as a baseline model in customer selection. Up to now, 

various statistical and machine learning techniques have been applied to response 

modeling. Traditional statistical models are popular for response modeling because 

of their simplicity, explaining ability and availability (Hosmer and Lemeshow, 1989). 

For example, Colombo and Jiang (1999) suggest a Recency–Frequency–Monetary 

(RFM) model to estimate the likelihood of future responses; Malthouse (2002) 

proposes a logistic regression approach to build a response model with considering 

the dollars spent in response to an offer. 

Recently, data mining techniques have been extensively used to identify 

potential customers for a new product. By analysis on historical purchase dataset, 

data mining can help marketers to build response models to increase customer 

selection accuracy. Various response models are built with different kinds of data 
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mining techniques in direct marketing: Haughton and Oulabi (1997) design response 

modeling with two decision trees algorithms, which are Classification and 

Regression Tree (CART) and Chi-Square Automatic Interaction Detector (CHAID); 

Zahavi and Levin (1997) propose a response model combing neural networks and 

statistical method in order to find the more effective technique for response modeling; 

Ling and Li (1998) compare a Naive Bayes response model and a C4.5 response 

model on three direct marketing problems, which are loan product promotion, life 

insurance product campaign and bonus program for analysis; Chiu (2002) builds a 

Case-Based Reasoning response model with Genetic Algorithm (GA) targeting at 

higher response rate (identification accuracy); Deichmann et al. (2002) construct a 

decision tree and linear regression combined response model. Response models have 

some practical problems, as indicated in some literature. Hanssens et al. (2005) point 

out that usually response models cannot gain top management attention, and they 

propose short-term and long-term effect response modeling while considering capital 

markets to deal with the problem; Kim et al. (2006) point out that existing response 

models only predict classification scores rather than predicting the total amount of 

money spent, for which they employed a pattern selection method designed for SVR. 

  

2.3.2 Profit Models 

    The second type of models in direct marketing is profit model, in which the 

customer features are used as independents to simulate customers' profit variables. 

Customers' probabilities of purchase can be estimated by a response model for 
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getting a powerful customer selection strategy. However, there may be an inverse or 

non-significant correlation between customers' likelihood to buy and their dollar 

amount to spend. Meanwhile, the greater dollar amount a customer will spend, the 

more cautious he will be in making a purchase decision. Thus, a direct marketing 

promotion equipped with a better response model may not lead to more revenue. For 

example, customers' purchase probabilities to buy may have a negative correlation 

with the dollar amount to spend in the widely-used KDD98 dataset task in KDD98 

Cup. As a result, profit models are necessary to predict customers' monetary amount 

to purchase.  

    Customer profitability plays a significant role in the development of 

customer-selection strategies and some techniques are proposed for profit modeling 

in direct marketing. Bult and Wansbeek (1995) propose a profit maximization 

approach in which profit and cost factors are included in the estimation function for 

logistic models. For a fixed budget, the profit maximization approach to customer 

selection, which includes all the customers with a positive expected marginal profit, 

is not realistic. Rao and Steckel (1995) suggest a model that combines the predicted 

probabilities and the expected profit to re-rank the customers and to float the high 

value customer to the top of a file, so as to improve profitability. Another 

Logic-based profit maximization approach is suggested by Van der Sheer (1998), 

whose estimation function involves profit and cost factors. Meanwhile, researchers 

have increasingly adopted the lifetime value (LTV) approach to select high value 

customers based on their long-term contribution of profit to a company in the future 
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(Venkatesan and Kumar 2004). Otter et al. (2002) use the probability model mainly 

as a benchmark considering a practice: select a household if the probability of 

response exceeds the ratio of cost to average yield. They take into account profit and 

cost parameters for estimation of model related coefficients.  

 

2.3.3 Cost-Sensitive Learning Models 

Another type of models in direct marketing is cost-sensitive learning. Response 

models can be applied to improve customer selection accuracy. However, accuracy is 

insufficient to guarantee good customer selection models because direct marketing 

datasets are always markedly imbalanced. For example, a direct marketing dataset 

may contain 98% non-response individuals and only 2% response individuals. 

Predictive accuracy will reach 98% if none of the non-responders are missed. In 

addition, it is assumed that all classification errors have the same cost, while 

practically misclassification errors of responders and non-responders involve 

different costs. This implies that customer selection does not merely involve a 

classification problem. Cost-sensitive learning methods can help to improve the 

profitability of customer selection models (Cui et al., 2012) by addressing 

classification problems with non-uniform costs. They typically place greater weight 

on the minority class, i.e., the responders.  

Cost-sensitive learning techniques have been widely used in direct marketing.   

Bult (1993) propose a discriminate analysis to conduct cost-sensitive learning, in 

which he combines cost factors with score estimation under two situations: 

symmetric situations (false negatives cost equals to false positives cost) and 
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asymmetric loss situations (false negatives cost is different from false positives cost). 

Considering the unbalanced class and skewed profit distribution character of direct 

marketing datasets, Cui et al. (2012) integrate cost-sensitive learning via priority 

sampling technique into a forecasting model to improve the return on investment 

under resource constraint. Pan et al. (1997) combine cost-sensitivity and data 

imbalance problem into a data preprocessing operation to explain cost information in 

the data-preprocessing stage. In addition, to deal with the difficulty of labeling data 

in direct marketing, Wang (2012) proposes two classification strategies to learn 

cost-sensitive classifier from training datasets with both labeled and unlabeled data, 

based on Expectation Maximization (EM).  

 

2.4 Multi-Objective Optimization Problem in Direct Marketing 

Predictive models in direct marketing seek to identify individuals who are most 

likely to respond to promotional solicitations or other intervention programs 

(Bhattacharyya, 2000). Standard customer selection modeling approaches embody a 

single objective. However, in reality, decision problems often seek multiple 

performance measures and marketing decision makers intend to seek the strategies 

that can optimize on multiple goals. This case can be seen as a kind of 

multi-objective optimization problem, which is concerned with mathematical 

optimization problems in which more than one objective functions have to be 

optimized simultaneously.  

In previous literature, more than one objective can be optimized with a single 

http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Mathematical_optimization
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model, for example, Wong and Cui (2010) propose to implement a parallel MOEA 

on a real-life direct marketing problem. In their study, a scoring function is used to 

divide customers into responders and non-responders: if a customer's score is greater 

than all the other ones' in non-responders class, then the customer is predicted as a 

responder. They converse a constrained optimization problem into an unconstrained 

multi-objective (response rate and profit) optimization problem and use MOEAs to 

find the scoring function and the threshold value. By comparing the models 

generated by the parallel MOEA, the parallel HGA and the DMAX approach on a 

large real-life direct marketing dataset, they prove that the parallel MOEA 

significantly outperform other approaches.  

In some other multi-objective optimization used methods, two simple statistical 

models are combined to take the advantages of each model while overcoming the 

weaknesses of both of them, and such models are two-stage models. Usually, a 

two-stage model tries to score the probability of response and monetary value a 

customer might spend in its two stages respectively (Bose and Chen, 2009). Thus 

more than one objective can be optimized. Some two-stage models have been used in 

previous literature. Levin and Zahavi (1998) combine logistic regression models and 

linear regression models to estimate customer response and monetary value 

respectively. Colombo and Jiang (1999) use a beta distribution model to predict the 

customer response probability and a gamma distribution model to predict profit. 

Baumgartner and Hruschka (2005) adopt a profit model to distinguish different kinds 

of customers and apply nonlinear regression models to estimate customers' profit and 
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the returned products.  

Besides two-stage models, some other methods and techniques have been used 

to solve multi-objective optimization problems in direct marketing. Bhattacharyya 

(1999) presents a GA-based approach for developing response models aimed at 

maximizing performance at the desired mailing depth. Response rates at different 

depth-of-files are considered to test model performance. In his study, tradeoffs 

among these objectives are explored and revamping approaches to control the 

over-fitting of training data are also investigated. This type of constrained 

optimization can be considered as indirect multi-objective optimization. Bi (2003) 

suggests using SVMs to solve a multi-objective program (MOP) by setting two 

competing goals to minimize the empirical risk and maximize the model capacity.  

Generally, multi-objective optimization problem is a practical problem in direct 

marketing. However, in direct marketing, comparing with single objective 

optimization models, multi-objective optimization models are still under-developed, 

and relatively fewer studies have attempted to optimize more than one objective in a 

single model. 

 

2.5 Support Vector Machine in Direct Marketing 

Support Vector Machines (SVMs)，have great generalization performance by 

employing Structural Risk Minimization (SRM) principle (Vapnik, 1995). Although 

SVMs have shown excellent generalization performance in a wide range of areas, 

including evaluation of consumer loans, image classification, automatic face 
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authentication, production values estimation, and text categorization, but their 

applications in marketing are rather scarce (Cui and Curry, 2005).  

SVMs can be used for classification in direct marketing to build response 

models, and the classification vision of SVM is Support Vector Classification (SVC). 

Coussement and Poel (2006) apply SVMs to obtain a response model in a newspaper 

subscription context. They prove that SVMs show better generalization performance 

than logistic regression and Random Forests when they are applied to noisy 

marketing data. Cui and Curry (2005) investigate the ability of SVMs to predict 

outcomes in emerging environments of marketing and they develop a framework to 

position SVMs against current modeling techniques. Lessmann et al. (2009) improve 

the SVM approach: genetic algorithms and support vector machines combined model 

(GA-SVM model). They find that GA-SVM with more accurate and stable results 

has greater effect than standard SVM with radial kernel by constructing SVMs in a 

complex real-world scenario of direct marketing. 

SVM can be also used to do regression and the regression vision of SVM is 

Support Vector Regression (SVR), which is originally proposed by Druker et al. 

(1997) for the linear regression function. SVR adopts slack variables and kernel 

functions and has been successful in various domains (Druker et al., 1997). SVR also 

has applications in direct marketing. Kim et al. (2006) apply SVRs for response 

modeling and solve the two drawbacks of conventional customer selection models in 

direct marketing. The first drawback is that conventional response models predict 

only classification scores, but not the total amount of money spent. The second is the 



33 

training data is too large. 

 

2.6 Summary 

    In the above sections, most important statistical and data mining techniques 

used in direct marketing are provided. For each technique, I give a brief theoretical 

introduction and a literature review of its implication in direct marketing. This 

chapter also includes a summary of different types of customer selection models. 

However, in general, there are some problems in the existing models. First, some 

models only consider a limited part of customer purchase features, which are too 

simple to achieve satisfactory results. Second, some of these techniques neglect to 

consider the uncertainty and make the same assumptions for the whole population, 

which will result in the over-fitting problem that the learning models performs well 

on training set but poorly on the testing set. Third, single objective models including 

response models and profit models only consider the optimization on either 

responses rate or the profit in direct marketing modeling. Good performance on a 

single objective may not be enough to anticipate an overall good performance in 

practical direct marketing promotions. Forth, in direct marketing, it is easy to 

understand that response rate and profit are closely related. However, techniques 

used in existing two-stage models neglect the relationship between them. The above 

questions of existing customer selection models inspire me to design a better model 

for targeting customers. SVM has solid statistical foundation and has also shown 

effective performance in various areas. In addition, this technique is an approach 
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which can be used for both classification and regression. Thus I adopt the SVM 

approach and the two-stage model to improve the performance of customer selection 

models by optimizing response rate and profit simultaneously in each stage. 
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Chapter 3.  The SVM Principle and Model Derivation 

 

3.1 Support Vector Machines Theory 

3.1.1 Optimization Problem 

The goal of SVMs is to devise a computationally efficient way of learning 

‘good’ separating hyperplanes in a high dimensional feature space. Optimization 

theory provides the mathematical techniques necessary to find the proper 

hyperplanes. 

The general form of the optimization problem is to find the maximum or 

minimum of a function, typically subject to certain constraints. 

Given functions  f x ,      ( 1, , )i k and      ( 1, , )i m  defined on a 

domain nR , 
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                  (3.1) 

where  f x  is called the objective function, and the remaining relations are called 

inequality and equality constraints respectively. The optimal value of the objective 

function is the optimum solution. 

Specially, if the objective function  f x  is convex over a convex domain, and

ig , 
ih  are affine, the optimization problem is called convex optimization problem.   

Given the optimization problem (3.1) over domain nR , the Lagrangian 

function is defined as  
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where the coefficients
i and

i  are called Lagrange multipliers. 

Given an optimization problem (3.1) over the convex domain
nR ,  f x  is 

convex and
ig , 

ih are affine (Karush–Kuhn–Tucker conditions). Then the Lagrangian 

function of the optimization problem is formulated as 3.2. The necessary and 

sufficient conditions for a normal point 


w to be an optimum are the existence of 
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3.1.2 Support Vector Classification (SVC) 

The simplest model of SVM is the maximal margin classifier, which forms the 

strategy of SVM. The goal of SVM is to search for the maximal margin hyperplane 

in a proper-chosen kernel-induced feature space.  

In SVC, searching maximal margin classifier is equivalent to minimizing the 

norm of the weight vector by setting the functional margin to 1. In detail, if w  is 

the weight vector realizing a functional margin of 1 on the positive point 
x and the 

negative point 
x , then a functional margin of 1 implies 
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The geometric margin  is then the functional margin of the resulting classifier 
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Hence, the resulting geometric margin equals
2

1 w . Maximizing margin hyperplane 

  equals minimizing w .  

Given a linearly separable training sample     1 1, , , ,l lS x y x y , the 

hyperplane  ,bw  that solves the optimization problem is as follows 
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realizes the minimization of w . The primal Lagrangian is 
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where 0i  are the Lagrange multipliers. According to Kuhn–Tucker conditions, the 

hyperplane  ,bw  to realize the minimization of w  satisfies   
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One then brings 3.8 into 3.7 to obtain 
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Furthermore, the optimal hyperplane can be expressed in the dual 

representation in terms of this subset of the parameters 
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The decision function  f x can be written as  
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where, sgn() is a sign function. 

In order to find a hyperplane in a high-dimension space, kernel trick is brought 

into the original optimization function to create nonlinear classifiers (Aizerman et al., 

1964). It is used to find maximal margin hyperplane. By the application of kernel 

trick, SVC usually takes a linear decision function as follows 

                   bxwxf T  )()( ,                        (3.12) 

where w and b are the model parameters needed to be learned; fd RR  : is an 
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implicit function mapping the original data from dR  to fR .  

The application of a kernel trick allows the algorithm to fit the maximal margin 

hyperplane in a transformed feature space. The transformation may be nonlinear and 

the transformed space is in high dimension. Though the classifier is a hyperplane in 

the highly dimensional feature space, it may be nonlinear in the original input space. 

Then the primal optimization problem of SVC to maximize the margin width is 

changed into the following Quadratic Programming (QP) problem: 
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The above formulation requires the training data to be separable, which is too 

strict in real applications and is likely to overfit the data. Slack variables are 

introduced for the hinge loss function to measure the classification error and to 

resolve the issue when the data are not separable. This yields the following QP 

problem:        
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(3.14) 

where 01 C is a non-negative constant used to balance the margin width and errors.  

 

Figure 3.1.  Illustration of SVC  

http://en.wikipedia.org/wiki/Feature_space
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In Figure 3.1, individuals are supposed to belong to two different classifications. 

SVC searches for the maximal margin hyperplane, which is the distance between two 

dotted lines. The full line is the proper hyperplane and the circled dots are support 

vectors. This SVC satisfies a set slack variable i .  

 

3.1.3 Support Vector Regression (SVR) 

The Support Vector method can also be applied for regression use, which is 

called Support Vector Regression (SVR). SVR follows the maximal margin 

hyperplane strategy, in which a non-linear function is learned through a linear 

learning machine by introducing a kernel trick. The capacity of the operation system 

is controlled by a parameter that does not depend on the dimensionality of the space, 

because in the classification case, the learning algorithm minimizes a convex 

function and its solution is sparse. They rely on defining a loss function that ignores 

errors within a certain distance of the true value. This type of function is referred to 

as an  -insensitive loss function.  

Figure 3.2 gives a description of SVR from a MATLAB-based plot on the same 

dataset in Figure 3.1, and it shows an example of a one-dimensional linear regression 

function with an  -insensitive band. The variable   measures the cost of the errors 

on the training points.  
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             Figure 3.2. Illustration of a one dimensional linear regression  

The idea of applying the  -insensitive loss function has enormous 

computational advantages as it can guarantee the existence of a global minimum. 

Consider a regression function 

                          
 f x x b  w                         (3.15) 

where ,Nx b w, R R and     1 1, , , , N

l lx y x y  R R . Training patterns are 

learned by moving  f x  inside  -insensitive tube. SVR is formulated to balance 

trade-off among empirical error, the flatness,  -insensitive tube size, and slack 

variables.  

As in SVC, a parameter C is introduced to measure the trade-off between the 

complexity and losses. SVR can be defined as follows: 
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It can also be solved by Lagrange multipliers and Kuhn–Tucker conditions. 
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3.2 Model Construction 

3.2.1 Bi-Objective Optimization Support Vector Machine (BOOSVM) Model 

    Next, I will consider a more difficult problem: minimize the classification error 

and regression error together.  

    On one hand, in SVC, the optimization function is constructed by finding a 

proper hyperplane to obtain a maximum-margin between the support vectors with the 

hyperplane, and the geometric margin  equals to 1 w w , thus finding the 

maximum-margin equals to finding the minimum w w . Generally, SVC searches 

for a hyperplane  ,w b  to realize the minimal w w , according to which the 

optimization problem in SVC can be constructed, that is 

                        

,

1
m i n i m i s e

2

1.
subject to

1, ,

b

T

i i
y w x b

i l



  



w w w

            (3.17) 

Then, get the primal Lagrangian  
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1
1
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l

i i i

i

L b y b 


     w, , w,w w, x

 .    (3.18) 

where 0i  are the Lagrange multipliers. 

On the other hand, SVR is constructed by finding a linear function to give a best 

interpolates to a given set S of training points. Geometrically this corresponds to 

searching a proper hyperplane to fit the given points. A solution to solve the 
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regression construction problem in SVR is ridge regression (Hoerl and Kennard, 

1970), the algorithm of which is as follow: 

                    
2

1

,
l

i i

i

L w b w w w x b y


      ,            (3.19)   

in which the parameter   controls a trade-off between low square loss and low 

norm of the solution. This algorithm presenting a complex cost function is made of 

two parts, one controlling the 'complexity 'of the hypothesis, and the other 

controlling its accuracy on the training data. The point is that this algorithm is 

analogous to the maximal margin algorithm in SVC case. Thus, SVC can be 

combined with SVR in a uniform framework. 

    According to the principles of SVC and SVR, the optimization problem in the 

combination of SVC and SVR can be written as: 
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                 (3.20) 

The optimization problem 3.20 is used to find a common hyperplane     

                         ( )f x w x b    

for both SVC and SVR, where the w  is shared by these two SVM algorithms. In 

order to find maximum-margin hyperplane in SVC and minimize the 'complexity 'of 
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the hypothesis in SVR, the common w  has to be minimized in 3.20. In addition, 

slack variables 1

1

m

i

i

C 


  need to be minimized to optimize SVCs' performance, and 

 2

1

m

i i

i

C  


  are used to find a low square loss in SVR to improve the accuracy on 

the training data. In order to solve the optimization problem in (3.20), I introduce the 

corresponding Lagrange multipliers, that is     
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(3.21) 

where , , , , , m        R are the Lagrange multipliers. According to 

Kuhn-Tucker conditions, the corresponding dual is achieved by differentiating with 

respect to  , , ,  and w b    , obtaining  
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which are transformed into 
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Since , , 0i i i

      , thus I have 

               ， ， . 

By plugging them into the Lagrange formulation (3.21), I obtain the dual form of 

(3.20) as follows: 
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In (3.24), I set
i i i     to obtain 
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where ),( K is the RBF-kernel. The above formula is the optimization problem which 

 10,i C   20,i C   20,i C 
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can be used for classification and regression simultaneously, and it is the 

optimization problem for a model called BOOSVM model. The decision function

 f x can be written as  

          

       
1

s g n s g n
m

i i i i

i

f x x b y x b 


 
       

 
w       (3.26) 

where, sgn() is a sign function. 

The mechanism of BOOSVM model can be described in Figure 3.3. In Figure 3.3, a 

common hyperplane can be used for classifying all the binary-classification dots, as 

well as fitting all the dots. The solution of BOOSVM model is to find such a proper 

hyperplane, which is determined by w and b. 

 

Figure 3.3. Illustration of BOOSVM model 

3.2.2 Gaussian RBF Model 

The original optimal hyperplane algorithm suggested by Vapnik (1995) is a 

linear classifier. Boser et al. (1992) propose a way to create nonlinear classifiers by 

applying the kernel trick to search maximum margin hyperplanes. In their research, 

the proposed algorithm is formally similar to previous classifiers, except that every 

dot product is replaced by a nonlinear kernel function. Kernel trick allows the 

http://en.wikipedia.org/wiki/Linear_classifier
http://en.wikipedia.org/wiki/Kernel_trick
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Kernel_(integral_operator)


47 

algorithm to fit the maximum margin hyperplane in a transformed feature space. The 

transformation may be nonlinear and the transformed space can be high-dimensional, 

implying that it may be nonlinear in the original input space, although the classifier is 

in the high-dimensional feature space. Kernels trick can be regarded as generalized 

dot products. Linear kernel can only handle the case in which the relationship 

between the class labels and attributes is linear. Some common nonlinear kernels 

include: Polynomial (Homogeneous and inhomogeneous), Gaussian radial basis 

function (RBF kernel), and Hyperbolic tangent. Among them, RBF kernel is the most 

popular kernel function used in SVM (Chang, 2010).  

SVM classifier uses inner product as the metric. If there is any dependent 

relationship among pattern’s attributes, such relationship can be realized by a 

mapping (Scholkopf and Smola, 2002)  ;X H x x  ： , where H is called 

feature space. The inner product similarity is computed through    ,x y  for 

pattern x and y. In the SVM literature, the above course is realized through kernel 

function 

                        , ,k x y x y   .                   (3.19) 

A Gaussian RBF kernel is formulated as 
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, exp
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  ,                  (3.20) 

and rewritten in the new form of 

                     2
, e x pk x y x y   ,                   (3.21) 

where the variation of parameter   can change the width of RBF kernel in SVM. 

http://en.wikipedia.org/wiki/Feature_space
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SVM with Gaussian RBF kernel is sensitive to the kernel width. Small kernel widths 

may cause over-fitting, and large kernel width may cause under-fitting. The so-called 

optimal kernel width is merely selected based on the tradeoff between under-fitting 

loss and over-fitting loss. So, it is necessary to adjust the parameter  to eliminate 

the inconsistency of coexisting over-fitting and under-fitting in SVM learning. 

 

3.2.3 Two-Stage BOOSVM Model 

The data in direct marketing area have some special characters. For one aspect, 

direct marketing data have many more non-responders than responders, where 

non-responders contribute no profit and their profit equals to zero. In my research, 

when predict profit with SVR, a regression function is learnt to describe the possible 

relationships between dependent variables and independent variables, and 

geometrically, regression function is an overall simulation of all the individuals. If 

the profit regression model is built based on all the customers, the model will be 

greatly influenced by the overwhelming numbers of non-responders, and the learnt 

regression function are prone to including the majority of non-responders in 

geometrics. However, forecasting the profit of non-responders is meaningless since 

their profit is a given value. Thus, the response rate prediction is based on the 

classification approach, while the profit forecasting based on regression uses 

different groups of customers to learn patterns.  

In my proposed BOOSVM model, all the customers in the testing set are used to 

predict response rate and profit simultaneously. As for this problem, I propose a 

app:ds:adjustment
app:ds:parameter
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two-stage method to improve the prediction accuracy of the BOOSVM model and 

enhance the profit prediction. Since non-responders have no profit or negative profit 

and only responders have positive profit, one may say that profit is dependent on 

response. Therefore, it is quite logical and appealing to adopt the two-stage method. 

The so-called two-stage method is easy to understand in that the final results are 

obtained from two stages, and the basic framework can be declared by the following 

figure. In the first stage, I learn a first BOOSVM model to produce a score to each 

customer in test set. In the second stage，by adjusting parameters in BOOSVM model, 

I strengthen the regression function in BOOSVM, and use only the responders in the 

train set to train the second model. The learned second model is only used to generate 

another score for individuals who have positive scores in the first stage. The result 

from multiplying the two scores is taken as the final score for a certain customer, and 

only the responders are given such updates to their first scores. Then we can rank the 

customers in the testing set in a descending order according to their final scores, and 

then use decile analysis to calculate the AARL and AAPL.    
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  The design of two-stage method attributes to the necessity of using different 

groups of customers to predict response rate and profit. Previous literature also 

provides support for this. For example, Cui et al. (2012) only use positive cases in 

the training process with profit as the dependent variable to predict profit lift in their 

comparison studies. In the research of Kim et al. (2006), since a classification model 

is not their research interest, when they apply SVR for response modeling to predict 

total amount of money spent of each respondent, they select a new dataset consisting 

of only the respondents, which is only a small part of all the customers in dataset. In 

addition, many multi-objective optimization models use a cutoff point to reduce the 

influence of non-responders on profit prediction. In the MOEA method proposed by 

Wong and Cui (2010), the cutoff point method is used to include only responders for 

profit prediction. In the second step of model proposed by Bult (1995), the firm's 

profit is maximized by determining an optimal cutoff point. 

  

3.2.4 Summary of Model Structure  

    To deal with the problem of optimization to both response rate and profit in 

direct marketing, I propose a two-stage BOOSVM model. The two-stage BOOSVM 

is built by combining both Support Vector Classification and Support Vector 

Regression based on SVM theory. According to SVM principle, this model is a 

convex, thus I propose to use CVX, an effective modeling system, to construct and 

solve this problem. The following content is an introduction to the algorithm of 
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realizing two-stage BOOSVM and the software used is MATALB. 
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Chapter 4. Algorithm and Data 

 

4.1 Algorithm  

4.1.1 CVX 

CVX is an effective modeling system to construct and solve disciplined convex 

programs. CVX has wide applications of many standard problems, including linear 

and quadratic programs, second-order cone programs, and semi-definite programs. 

Its formulation to solve convex norm programs is feasible and easy to handle. The 

modeling system of CVX is MATLAB-based. With the help of CVX, convex 

optimization problems can be easily solved with standard MATLAB expressions. 

Special requirements for the content and format of the CVX algorithm is as 

follow: all variables in constraints or objective functions must be declared using the 

specified form of variable commands beforehand; the objective minimization 

function must be convex (the maximization objective function must be concave); 

operators permitted in CVX constraints are limited, and permitted ones are "== " 

equality constraints, "<=" less-than constraints and " >=" greater-than constraints. 

Generally, the standard format of CVX is described in following table: 

Table 4.1. Standard format of CVX 

 

 

      

    

cvx_setup; 

cvx_begin 

    variables; 

maximize (optimization function); 

subject to  Equality Constraints; 

          Inequality Constraints; 

cvx_end  

app:ds:standard
app:ds:format
app:ds:standard
app:ds:format
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The optimization problem in SVM model is a convex optimization problem 

(Bennett and Campbell, 2000), and BOOSVM is SVM-based. Thus, CVX is an ideal 

choice to solve the optimization problem in BOOSVM and it is applied by an insert 

function form in the whole MATLAB code.  

 

4.1.2 Grid Search Algorithm 

    In data mining model construction, parameter selection processes cannot be 

avoided. A practical and standard way to perform parameter optimization is grid 

search, which is guided by some performance metrics, for example, cross-validation 

(Hsu, 2010). In a grid search algorithm, parameters should be set bounds and 

conducted discretization manually in advance according to machine learners' 

parameter value spaces.  

    In a RBF kernel SVM, grid search is a reasonable first choice for parameter 

selection (Hsu et al., 2010). In a RBF kernel equipped SVM, two types of parameters, 

the regularization parameter C and the kernel parameter , should be selected. The 

exponentially growing sequences  

        
 

 

0 . 0 0 1 , 0 . 0 1 , 0 . 1 , 0 , 1 0 , 1 0 0 , 1 0 0 0 , ( 1 , 2 ) ;

0 . 0 1 , 0 . 1 , 0 , 1 0 , 1 0 0 ,

iC i



 


            (4.2) 

are applied in grid search algorithm for parameter selection in BOOSVM. In this grid 

search algorithm, the BOOSVM model which is equipped with different 

cross-product parameters is applied to the training sets to obtain results respectively. 

Different pairs of C and   can be used to obtain different values of AARL and 

AAPL. According to the Pareto efficiency principle，the AARL and AAPL pairs that 

satisfy Pareto efficiency are retained. Next, comparing the pairs of AARL and AAPL 
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which are in the Pareto frontier, the AARL and AAPL pair with the maximal AAPL is 

selected as the best solution. Meanwhile，the C and   pair corresponding to the best 

solution will be chosen for the next step.  

 

4.1.3 Algorithm Framework 

Table 4.2 outlines the algorithm framework of two-stage BOOSVM model: 

Table 4.2. Algorithm Framework 

The overall algorithm   

Input: The learning set   

Output: Scores for individuals in testing set, AARL and AAPL    

Step 1: SMOTE Processing;  

Step 2: Parameters Generating;  

Step 3: Model Building; 

Step 4: Scoring; 

Step 5: Two-Stage BOOSVM; 

Step 6: Model Testing 

 

 

Step 1: SMOTE Processing 

The over-sampling amount I used in SMOTE is 600%. With this step the 

amount of response individuals is six times as many as the original. 

Step 2: Parameters Generating 

The parameters need to be generated include
1C ,

2C  and , where 
1C  and 

2C  

are parameters in the optimization constraint, and   is used in kernel function. 

Specifically, when 
1C  equals zero, and the   in the optimization function equals 

to zero, and then BOOSVM model can be transferred into a SVR-used model. 

Similarly, when 
2C  equals zero, BOOSVM model is equivalent to a SVC-used 

model. So, the magnitude of 
1C  and 

2C  determines the application degree of 

classification and regression in the BOOSVM model. 



55 

Different (
1 2, ,C C  ) combinations are used in form of cross-product of the three 

sets

   

 

1 21000, 100, 10,0,10,100,1000 ; 1000, 100, 10,0,10,100,1000 ;

100, 10,0,10,100 ,

C C



       

  

and are evaluated in terms of performance by grid search.  

Step 3: Model Building  

I use the CVX method to solve the dual optimization problem and get proper 

 
and  

 in 3.22. Then BOOSVM model-1 can be obtained.  

Step 4: Scoring 

Bring  
and  

into 3.23 to get  f x , which is a scoring function. Then use 

 f x  to give a score to each customer in testing set. 

Step 5: Two-Stage BOOSVM 

By setting C1=0, use grid search to find a proper pair (C2,  ). Then CVX 

learns a model on responders in training set to get a BOOSVM model-2 and use the 

BOOSVM model-2 to give another score to each customer who is predicted as a 

responder after step 3. The result from multiplying the two scores is taken as the final 

score to the certain customer. 

Step 6: Model Testing  

The customers are ranked according to the scores in a descending order. Decile 

analysis is performed according to the descending-order scores to generate the AARL 

and AAPL on 10 different depth-of-files. The algorithm of this thesis is explained by 

the following figure. 

 

http://en.wikipedia.org/wiki/Cartesian_product
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4.2 Data Description 

Selection of target customers is the core activity in direct marketing. There are 

various sophisticated techniques that can help marketers formulate effective direct 

marketing strategies. Practical budget for promotions is always limited, thus only a 

fraction of the customers can be selected. Decision markers do not deal with a single 

fixed objective. In addition to striving for a higher response rate, decision makers 

always pursue higher profit.  

Support Vector Machine (SVM) technique is valued in data mining areas for its 

complete and systematic theory. In my thesis, I adopt a two-stage BOOSVM model 

to learn patterns on SMOTE-processed dataset (two-stage BOOSVM (SMOTE)) to 

deal with the bi-objectives optimization problem. The two objectives are response 

rate and profit. I use two datasets for testing two-stage BOOSVM (SMOTE) model's 

performance and compare its results with two benchmark techniques, which are 

logistic regression and parallel Multi-Objective Evolutionary Algorithm (MOEA). 

 

4.2.1 Dataset One  

  The first dataset (DM dataset) comes from a U.S.-based catalog direct marketing 

company that sells multiple product lines of general merchandise ranging from gifts 

and apparel to consumer electronics. The DM dataset contains information of 

106,284 consumers selected from a perennial promotion. The dataset only uses the 

most recent version, which lasts for six months and achieves a 5.4% response rate 

with 5,740 responders. Seventeen independent variables are finally selected by 
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applying the forward selection criterion, which is an automatic procedure for 

carrying out predictive variable selection. In addition, DM dataset contains only one 

dependent variable (profit), and the variable can also be transformed to represent 

customer response. If the sign of the profit of a certain customer is positive, the 

customer is a responder, otherwise, the customer is a non-responder. These seventeen 

independent variables and the one dependent variable are summarized in the 

Appendix A. 

 

4.2.2 Dataset Two  

The second dataset is KDD-98 dataset. This dataset is a well-studied dataset 

firstly used in the 1998 Knowledge Discovery and Data mining competition. The 

competition task in 1998 is a regression problem whose goal is to estimate the return 

from a direct mailing in order to maximize donation. I select the KDD-98 dataset as 

the second dataset since it is related to direct marketing and widely used in data 

mining research.  

 The KDD-98 dataset contains 191,779 records from the purchase contact 

history of the last year's mailing campaign, which is a charitable organization sends 

out regular mailings to its target customers to solicit donations. Similar to the 

KDD-98 dataset used in the research by Cui et al. (2012), I used the 44 independent 

variables suggested in SAS Enterprise Miner Tutorial for model building. These 

variables and the two dependent variables are summarized in the Appendix B. The 

dataset has been pre-split in a fixed form, with 95,412 records for training set, and 
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96,367 records in the testing set. The KDD-98 dataset is special for its feature that 

there is an inverse correlation between customers' probabilities to purchase and the 

dollar amount to spend. This feature may result from the practical case that 

customers will be more cautious to make a purchase decision when they intend to 

spend more money. In this sense, a model obtaining a higher response rate on 

KDD-98 dataset may not lead to greater profit. 

 

4.3Dataset Process 

4.3.1 Synthetic Minority Over-sampling Technique (SMOTE)  

Real-world datasets are often predominately composed of “normal” examples 

with only a small percentage of “abnormal” or “interesting” examples (Chawla et al., 

2002). This means that imbalanced datasets, the negative instances far outnumbering 

the positive instances, are the common cases in real classification datasets, such as 

the datasets in gene profiling, medical diagnosis, and credit card fraud detection. 

Even in some circumstances, the ratio of positive to negative instances can be 

smaller than 0.01. 

SVMs obtain effective applications in many areas; however the remarkable 

performance of SVMs is negatively affected by imbalanced datasets. The 

phenomenon can be explained by the Occam’s razor principle in which classifiers are 

designed to generalize sample data and to output the simplest hypothesis performing 

best to fit the data. Thus, in general cases, classifiers will perform much poorer on 

the imbalanced dataset  
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A successful and effective technique, SMOTE, is good at overcoming the 

difficulties of data mining approaches in analyzing imbalanced data. SMOTE is 

inspired by an application in handwritten character recognition (Ha & Bunke, 1997) 

and it is also particularly relevant to the study of Ling and Li (1998), in which 

under-sampling of the majority class is combined with over-sampling of the minority 

class. Over-sampling the minority class is processed by creating “synthetic” 

examples: for each sample in the minority class, its nearest k-minority (k is a 

parameter) class neighbors are added to it. Along the line segments between the 

sample and its neighbors, synthetic examples are introduced by multiplying the 

difference between the sample and its nearest neighbor by a random number between 

0 and 1. Then depending upon the amount of over-sampling required, neighbors from 

the k-nearest neighbors can be randomly chosen.  

Data of direct marketing are usually very imbalanced as the responders account 

for only a small part of non-responders, thus the SVM-based BOOSVM model may 

perform badly on direct marketing dataset. To solve the problem, I propose to 

process the data by SMOTE method and make the training set more balanced. The 

class of responders is the minority class and it is over-sampled by introducing k 

synthetic examples along the line segments of each sample between its k nearest 

neighbors. k is the over-sampling amount, the selection of k can influence the results 

(AARL and AAPL). I try 9 different values of k ( 200%, ,1000%k  ) on subsets of 

DM datasets, and get 9 different pairs of AARL and AAPL. Then based on the trial 

and error, the obtained AAPL and AARL are both the highest when the 
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over-sampling amount (k) equals to 600%. Thus, I select 600% as the over-sampling 

amounts in my thesis.   

   

4.3.2 Cross-validation 

Cross-validation is a standard technique used for minimizing the over-fitting 

problem (Hsu et al., 2010). In cross-validation, the training data set is divided into k 

subsets of equal size. Then each subset is used as a testing set to evaluate the 

performance of the model trained on the remaining (k-1) subsets. The process comes 

to an end when each instance of the whole training set has been used once as test set 

and the cross-validation result is the average of all runs.  
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Figure 4.1. Illustration of 10-fold cross-validation  

In this thesis, I use 10-fold cross-validation in DM dataset to avoid the 
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over-fitting problem. In 10-fold cross-validation, the original sample is randomly 

partitioned into 10 equal size subsamples. Of the 10 subsamples, a single subsample 

is retained as the validation data for testing the model, and the remaining 9 

subsamples are combined and used as training data. Such process is then repeated 10 

times, with each of the 10 subsamples used exactly once as the testing data. The 

results from the 10 folds then can be averaged to produce a single estimation. The 

framework of 10-fold cross-validation is explained by Figure 4.1.  
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Chapter 5. Results and Comparisons 

 

5.1 Experiments for Testing the Proposed Model 

In order to make the prediction more accurate, I use two methods to assist 

BOOSVM model, which are SMOTE and two-stage method. In order to prove the 

merits of these methods, I conduct four experiments as described in Figure 5.1. First, 

BOOSVM is a combined method of SVC and SVR. To prove that BOOSVM 

performs better than SVC and SVR in selecting customers, I compare the results of 

BOOSVM, SVC and SVR. Second, to test the necessity of SMOTE method for the 

BOOSVM model, I use the original training set and SMOTE-processed training set 

respectively as the training set for BOOSVM model. Third, to prove the merit of the 

two-stage method，I compare the results of BOOSVM model using the two-stage 

method with those of the BOOSVM model without the two-stage method. Fourth, to 

verify the effectiveness of the SMOTE method, I compare the proposed model with 

logistic regression and MOEA models. The datasets used in four experiments are 

from the DM dataset.  

 

5.1.1 BOOSVM, SVC and SVM 

In my study, BOOSVM is a SVM-based model, combining SVC and SVR to 

search optimization of response rate and profit. To prove that BOOSVM can perform 

better in customer selection than original SVC and SVR, results (AARL and AAPL) 
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of BOOSVM, SVC, and SVR are compared. A 10-fold cross-validation using the 

DM dataset is performed in this study. The results are shown in Table 5.1.   

Table 5.1. AARL and AAPL of BOOSVM, SVC and SVR on original DM dataset. 

Model 

/decile 

AARL of  

SVC 

AARL of  

SVR 

AARL of 

BOOSVM 

AAPL of  

SVC 

AAPL of  

SVR 

AAPL of  

BOOSVM 

1 301.7(36.1) 190.3(19.7) 289.1(13.6) 358.8(29.1) 403.2(20.6) 417.2(24.7) 

2 260.8(25.3) 178.7(19.0) 261.3(9.4) 301.0(12.0) 310.5(15.2) 305.9(13.6) 

3 215.3(16.3) 163.8(16.9) 204.5(5.7) 232.1(11.3) 251.5(12.4) 243.5(10.0) 

4 177.6(10.2) 152.1(14.8) 180.2(3.6) 199.3(8.2) 226.8(8.8) 212.7(6.7) 

5 142.5(8.7) 134.9(6.5) 150.8(3.5) 183.9(7.3) 186.6(7.9) 183.4(4.1) 

6 119.6(5.9) 125.2(5.5) 120.1(2.2) 152.7(4.8) 170.4.(4.3) 160.4(4.7) 

7 116.2(5.6) 120.1(2.5) 118.5(4.0) 134.8(3.4) 153.1(5.1) 143.3(2.4) 

8 109.5(2.3) 111.4(2.2) 114.2(1.8) 120.3(3.5) 126.8(2.8) 132.9(1.6) 

9 105.2(1.4) 105.8(1.7) 103.5(1.2) 108.6(1.9) 112.1(1.6) 115.3(1.1) 

10 100.0 100.0 100.0 100.0 100.0 100.0 

Table 5.1 (continued) T-test results of AARL differences 

Model 

/Decile 

AARL of  

SVC 

AARL 

of BOOSVM 

Difference  T-value 

(P-value) 

1 301.7 (36.1) 289.1 (13.6) -12.6 1.03 (0.34) 

2 260.8 (25.3) 261.3 (9.4) 0.5 0.06 (0.95) 

Model 

/Decile 

AARL of  

SVR 

AARL 

of BOOSVM 

Difference  T-value 

(P-value) 

1 190.3 (19.7) 289.1 (13.6) 98.8*** 13.05 (0.00) 

2 178.7 (19.0) 261.3 (9.4) 82.6*** 12.32 (0.00) 

Table 5.1(continued) T-test results of AAPL differences 

Model 

/Decile 

AAPL 

of SVC 

AAPL 

of BOOSVM 

Difference  T-value 

(P-value) 

1 358.8 (29.1) 417.2 (24.7) 58.4*** 4.84 (0.00) 

2 301.0 (12.0) 305.9(13.6) 4.9 0.85 (0.41) 

Model/

Decile 

AAPL of  

SVR 

AAPL 

of BOOSVM 

Difference  T-value 

(P-value) 

1 403.2 (20.6) 417.2 (24.7) 14.0 1.38 (0.19) 

2 310.5 (15.2) 305.9 (13.6) -4.6 1.40 (0.18) 

*, **, *** indicate the 10%, 5%, and 1% significance levels, respectively 
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Comparing the results of SVC and BOOSVM, I find the AARLs of BOOSVM 

(289.1and 261.3) are roughly equal to those of SVC (301.7 and 260.8) in the top two 

deciles and the t-tests (t-value: 1.03 and 0.06) show no significant difference between 

them. But the AAPL of BOOSVM (417.2) is significantly (t-value: 4.84) higher than 

that of SVC (358.8) in the first decile. The comparison suggests that BOOSVM 

model is better than SVC model. When comparing the results of SVR and BOOSVM, 

the t-tests (t-value: 1.38 and 1.40) show that the AAPLs of BOOSVM (417.2 and 

305.9) are at a comparable level with those of SVR (403.2 and 310.5) in the top two 

deciles, while the AARL of BOOSVM (289.1) is significantly (t-value: 13.05) higher 

than that of SVR (190.3) in the first decile. As a result, BOOSVM is also better than 

SVR in selecting customers. 

 

5.1.2 Two-Stage BOOSVM with and without SMOTE Comparison 

In my thesis, I proposed a two-stage BOOSVM method to seek the optimization 

of both response rate and profit. There are two datasets which are used in this study, 

namely the DM dataset and the KDD98 dataset. The two data sets are both quite 

unbalanced, and the ratios of responders in all the customers (5.4% and 5.1%) are 

both quite small. Because SVM is weak at dealing with unbalance dataset, the 

SMOTE method is used to deal with this problem. To test the necessity of the 

SMOTE method in two-stage BOOSVM model, I use the original training set and the 

SMOTE-processed training set respectively as the training set for BOOSVM model. 

10-fold cross-validation DM dataset is used in this study. For the SMOTE-processed 
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model, SMOTE is only used for the training dataset in each validation. The results 

are showed in Table 5.2.  

Table 5.2. AARL and AAPL of two-stage BOOSVM on original DM dataset and 

two-stage BOOSVM on SMOTE-processed DM dataset. 

Model 

/deciles 

AARL 

of two-stage 

BOOSVM 

(original) 

AARL 

of two-stage 

BOOSVM 

(SMOTE) 

AAPL 

of two-stage 

BOOSVM 

(original) 

AAPL 

of two-stage 

BOOSVM 

(SMOTE) 

1 289.1 (13.6) 352.2 (16.1) 417.2 (24.7) 628.2 (32.1) 

2 261.3 (9.4) 270.8 (10.9) 305.9 (13.6) 403.4 (16.8) 

3 204.5 (5.7) 220.4 (6.3) 143.5 (10.0) 276.5 (9.3) 

4 180.2 (3.6) 180.3 (4.2) 212.7 (6.7) 214.4 (8.8) 

5 150.8 (3.5) 154.0 (3.1) 183.4 (4.1) 180.5 (5.5) 

6 120.1 (2.8) 130.7 (1.6) 160.4 (4.7) 149.7 (6.1) 

7 118.5 (4.0) 114.5 (2.2) 143.3 (2.4) 131.2 (4.9) 

8 114.2 (1.8) 110.2 (1.5) 132.9 (1.6) 114.2 (4.7) 

9 103.5 (1.2) 104.7 (0.9) 115.3 (1.1) 108.9 (1.9) 

10 100.0 100.0 100.0 100.0 

Table 5.2 (continued). T-test results of the differences (original data and 

SMOTE-processed data) 

Model/Decile AARL 

of two-stage 

BOOSVM 

(original) 

AARL 

of two-stage 

BOOSVM 

(SMOTE) 

Difference  T-value 

(P-value) 

1 289.1 (13.6) 352.2 (16.1) 63.1*** 9.47 (0.00) 

2 261.3 (9.4) 270.8 (10.9) 9.5* 2.09 (0.06) 

Model/Decile AAPL 

of two-stage 

BOOSVM 

(original) 

AAPL 

of two-stage 

BOOSVM 

(SMOTE) 

Difference  T-value 

(P-value) 

1 417.2 (24.7) 628.2 (32.1) 211*** 16.47 (0.00) 

2 305.9 (13.6) 403.4 (16.8) 97.5*** 14.26 (0.00) 

*, **, *** indicate the 10%, 5%, and 1% significance levels, respectively 
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The above table indicates that the model obtained from SMOTE-processed 

training set performs much better than the model learned from original dataset. In the 

top 20% deciles, the AARLs of two-stage BOOSVM (SMOTE) (352.2 and 270.8) 

are significantly (t-value: 9.47 and 2.07) higher than the AARLs of the two-stage 

BOOSVM (original) (289.1 and 261.3). The AAPLs of two-stage BOOSVM 

(SMOTE) (628.2 and 403.4) are also significantly (t-value: 16.47 and 14.26) bigger 

than the values for AAPL of two-stage BOOSVM (original) (417.2 and 305.9). So 

far, it has been proven that the SMOTE method can help to improve the performance 

of BOOSVM model in terms of model training on imbalanced data. 

 

5.1.3 One-Stage BOOSVM and Two- Stage SMOTE Comparisons 

To prove that the proposed two-stage BOOSVM model can contribute to the 

prediction of high-profit customers in order to increase the profit lift, I make the 

following comparisons between BOOSVM model and the two-stage BOOSVM 

model. I use 10-fold cross-validation for the DM dataset in this study. The training 

sets used in this experiment are all processed by SMOTE and SMOTE is only used 

for the training dataset in each validation. The comparisons results are showed in 

Table 5.3.  

 

 

 

 



67 

Table 5.3. AARL and AAPL of BOOSVM on SMOTE-processed DM dataset and 

two-stage BOOSVM on SMOTE-processed DM dataset 

Model 

/deciles 

AARL of 

BOOSVM 

(SMOTE) 

AARL of two-stage 

BOOSVM 

(SMOTE) 

AAPL of 

BOOSVM 

(SMOTE) 

AAPL of two-stage 

BOOSVM 

(SMOTE) 

1 354.6 (15.6) 352.2 (16.1) 601.7 (29.8) 628.2 (32.1) 

2 271.2 (8.3) 270.8 (10.9) 389.2 (18.4) 403.4 (16.8) 

3 219.7 (5.9) 220.4 (6.3) 274.8 (10.1) 276.5 (9.3) 

4 180.3 (4.2) 180.3 (4.2) 214.4 (8.7) 214.4 (8.8) 

5 154.0 (4.5) 154.0 (3.1) 180.5 (8.2) 180.5 (5.5) 

6 130.7 (2.1) 130.7 (1.6) 149.7 (5.0) 149.7 (6.1) 

7 114.5 

(1.2) 

114.5 (2.2) 131.2 

(6.2) 

131.2 (4.9) 

8 110.2 (1.0) 110.2 (1.5) 114.2 (1.5) 114.2 (4.7) 

9 104.7 (0.3) 104.7 (0.9) 108.9 (1.1) 108.9 (1.9) 

10 100.0 100.0 100.0 100.0 

Table 5.3 (continued). T-test results of the differences (BOOSVM and two-stage 

BOOSVM) 

Model 

/Decile 

AARL 

of BOOSVM 

(SMOTE) 

AARL of two-stage 

BOOSVM 

(SMOTE) 

Difference  T-value 

(P-value) 

1 354.6 (15.6) 352.2 (16.1) -2.4 0.34 (0.73) 

2 271.2 

(8.3) 

270.8 

(10.9) 

-0.4 0.09 (0.92) 

Model 

/Decile 

AAPL 

of BOOSVM 

(SMOTE) 

AAPL 

of two-stage 

BOOSVM 

(SMOTE) 

Difference  T-value 

(P-value) 

1 601.7 

(29.8) 

628.2 

(32.1) 

16.5* 1.99 (0.07) 

2 389.2 

(18.4) 

403.4 

(16.8) 

14.2* 1.80 (0.10) 

*, **, *** indicate the 10%, 5%, and 1% significance levels, respectively 
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The AARLs (352.2, 270.8 and 220.4) and AAPLs (628.2, 403.4 and 276.5) are 

only changed in the top three deciles, from AARLs (354.6, 271.2 and 219.7) and 

AAPLs (601.7, 389.2.4 and 274.8) respectively. It is because that 20% to 30% 

percent of customers are forecasted as responders in the first stage BOOSVM and 

only these customers are used the two-stage method to give a profit prediction. 

Between the BOOSVM and the two-stage BOOSVM using SMOTE, there are no 

significant (t-value: 0.34 and 0.09) differences in their AARLs (352.2 and 270.8 vs. 

354.6 and 271.2). However, the AAPLs of the two-stage BOOSVM are significantly 

(t-value: 0.07 and 0.10) higher than those of BOOSVM (628.2 and 403.4 vs. 601.7 

and 389.2). The results indicate the superiority of the of two-stage method. 

 

5.1.4 Results of Models Comparisons: DM Dataset 

    BOOSVM model constructs a common hyperplane for SVC and SVR to 

optimize response rate lift and profit lift with a single model. I compare my method 

with two other methods, which are the logistic regression and multi-optimization 

algorithm (MOEA). Logistic regression is used as a baseline comparison model. It is 

a discrete selection model, and the model solution speed is fast and convenient for 

probability expression of its significant characteristics. In addition, another 

competing method, MOEA, has been proved excellent in customer selection area in 

the literature (Wong and Cui, 2010). 

In this study, I use SMOTE method to assist all the three models. A 10-fold 

cross-validation using the DM dataset is used in this study. For SMOTE-processed 
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model, SMOTE is only used for the training dataset in each validation. Results are 

showed in Table 5.4 and Table 5.5. 

Table 5.4. AARL of logistic regression with SMOTE-processed DM dataset, MOEA 

with SMOTE-processed DM dataset and two-stage BOOSVM with 

SMOTE-processed DM dataset 

Model/ 

Decile 

AARL  

of logistic regression 

(SMOTE) 

AARL 

of MOEA 

(SMOTE) 

AARL  

of two-stage BOOSVM 

(SMOTE) 

1 365.9 (23.1) 284.6 (53.2) 352.2 (16.1) 

2 254.4 (11.9) 213.5 (29.2) 270.8 (10.9) 

3 210.0 (7.1) 178.4 (21.1) 220.4 (6.3) 

4 183.6 (3.7) 155.6 (14.7) 180.3 (4.2) 

5 160.6 (3.7) 140.4 (12.1) 154.0 (3.1) 

6 144.6 (2.5) 128.4 (7.5) 130.7 (1.6) 

7 128.9 (1.5) 118.0 (5.0) 114.5 (2.2) 

8 117.1 (1.1) 110.5 (2.6) 110.2 (1.5) 

9 109.7 (0.8) 105.3 (1.4) 104.7 (0.9) 

10 100.0 100.0 100.0 

Table 5.4 (continued). T-test results of the differences 

Model/Decile AARL 

of logistic 

regression 

(SMOTE) 

AARL 

of two-stage 

BOOSVM 

(SMOTE) 

Difference  T-value 

(P-value) 

1  365.9 

 (23.1) 

352.2  

(16.1) 

-13.7 1.54  

(0.15) 

2  254.4  

 (11.9) 

270.8 

(10.9) 

16.4*** 3.21  

(0.01) 

Model/Decile AARL 

of MOEA 

(SMOTE) 

AARL 

of two-stage 

BOOSVM 

(SMOTE) 

Difference T-value 

(P-value) 

1 284.6  

(53.2) 

352.2  

(16.1) 

67.6*** 3.99  

(0.00) 

2 213.5  

(29.2) 

270.8  

(10.9) 

57.3*** 5.45  

(0.00) 

*, **, *** indicate the 10%, 5%, and 1% significance levels, respectively 
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Table 5.5. AAPL of logistic regression with SMOTE-processed DM dataset, MOEA 

with SMOTE-processed DM dataset and two-stage BOOSVM with 

SMOTE-processed DM dataset 

Model/De

cile  

AAPL 

of logistic regression  

(SMOTE) 

AAPL 

of MOEA 

(SMOTE) 

AAPL 

of two-stage BOOSVM 

(SMOTE) 

1 594.3 (40.8) 498.8 (91.9) 628.2 (32.1) 

2 365.7 (20.9) 321.5 (43.0) 403.4 (16.8) 

3 262.3 (12.3) 243.5 (26.7) 276.5 (9.3) 

4 215.1 (7.1) 199.2 (16.5) 214.4 (8.8) 

5 176.9 (5.4) 168.4 (14.1) 180.5 (5.5) 

6 142.2 (4.8) 147.2 (10.1) 149.7 (6.1) 

7 124.2 (3.8) 129.6 (7.7) 131.2 (4.9) 

8 112.8 (2.1) 117.3 (3.6) 114.2 (4.7) 

9 115.9 (1.5) 108.2 (2.0) 108.9 (1.9) 

10 100.0 100.0 100.0 

Table 5.5 (continued). T-test results of the differences 

Model/Decil

e  

AAPL 

of logistic 

regression 

(SMOTE) 

AAPL 

of two-stage 

BOOSVM 

(SMOTE) 

Difference T-value 

(P-value) 

1  594.3 (40.8) 628.2 (32.1) 33.9* 2.06 (0.06) 

2  365.7 (20.9) 403.4 (16.8) 37.7*** 4.45 (0.00) 

Model/Decil

e  

AAPL 

of MOEA 

(SMOTE) 

AAPL 

of two-stage 

BOOSVM 

(SMOTE) 

Difference T-value 

(P-value) 

1  498.8 (91.9) 628.2 (32.1) 129.4*** 4.20 (0.00) 

2  321.5 (43.0) 403.4 (16.8) 81.9*** 5.61 (0.00) 

*, **, *** indicate the 10%, 5%, and 1% significance levels, respectively 

In Table 5.4, it is observed that in the first deciles, AARL of MOEA (SMOTE) 

(284.6) is significantly lower (t-value: 3.99) than the result of BOOSVM method 

(352.2). In the second decile, AARL of logistic regression (SMOTE) method (254.4) 

and MOEA method (213.5) are both lower than that of BOOSVM method (270.8). In 

Table 5.5, the AAPLs of MOEA method (498.8 and 321.5) are significantly (t-value: 
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4.20 and 5.61) lower than those of BOOSVM method (628.2 and 403.4) in the first 

and second deciles. Meanwhile, the AAPL of logistic regression (365.7) is 

significantly (t-value: 4.02) lower than that of BOOSVM method (403.4) in second 

decile. 

The results in Table 5.4 and Table 5.5 exclude the sole influence of SMOTE 

method. In the following comparison experiments, two-stage BOOSVM methods are 

all learnt models on SMOTE-processed dataset and other comparison models are 

learned from the original training sets.  

 

5.2 Results of Models Comparisons: KDD-98 Dataset 

I use another dataset, KDD-98 dataset, to test the performance of the two-stage 

BOOSVM model. There are two reasons to choose KDD-98 dataset in my thesis. 

First, DM dataset is not commonly used and two-stage BOOSVM model's excellent 

performance on DM dataset is insufficient to prove its efficiency, while KDD-98 

dataset is widely available to the public and has already been used in many studies. 

Second, in common cases customers' probabilities to purchase have positive 

relationship with the dollar amount to spend and a higher response rate can lead to 

more profit (for example, DM dataset). However, the likelihood of customer to 

response may also be inversely correlated to the dollar amount spent, and a higher 

response rate cause a reduction of profit (for example, KDD-98 dataset) (Wang et al., 

2005). Thus, applying both DM dataset and KDD-98 dataset can prove the two-stage 

BOOSVM model's efficiency in different relationship situations between two target 
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variables (response rate and profit).  

    In this study, logistic regression, MOEA and two-stage BOOSVM model all 

employ the SMOTE-processed KDD-98 dataset. Compared results are shown in 

Table 5.6. 

Table 5.6. AARL of logistic regression with KDD-98 dataset, MOEA with KDD-98 

dataset and two-stage BOOSVM with SMOTE-processed KDD-98 dataset 

Model 

/Decile  

AARL of logistic 

regression (SMOTE) 

AARL of MOEA 

(SMOTE) 

AARL of two-stage 

BOOSVM (SMOTE) 

1 138.7 116.0 175.6 

2 132.3 113.5 164.4 

3 126.9 110.5 150.3 

4 120.1 108.6  145.7 

5 113.8 108.3 137.1 

6 110.1 107.0  131.2 

7 107.2 105.5  123.5 

8 104.6 104.3  116.2 

9 102.2 102.7  105.5 

10 100.0 100.0 100.0 

Table 5.7. AAPL of logistic regression with KDD-98 dataset, MOEA with KDD-98 

dataset and two-stage BOOSVM with SMOTE-processed KDD-98 dataset  

Model 

/Decile 

AAPL of logistic 

regression (SMOTE) 

AAPL of MOEA 

(SMOTE) 

AAPL of two-stage 

BOOSVM (SMOTE) 

1 514.1 482.1 714.3 

2 313.0 367.6  538.4 

3 227.9 296.5  327.2 

4 180.4 243.6  279.3 

5 166.1 216.9 220.5 

6 153.6 187.2  169.3 

7 145.4 162.3 146.1 

8 135.3 143.5 132.2 

9 120.6 122.5 112.9 

10 100.0 100.0 100.0 
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Table 5.6 gives the results of average accumulate response rate lift (AARL) 

obtained by logistic regression, MOEA method and the two-stage BOOSVM method, 

respectively. Both the logistic regression and MOEA method are based on the 

KDD-98 dataset, while the two-stage BOOSVM method is based on 

SMOTE-processed KDD-98 dataset. It is showed in table 5.6 that when selecting the 

first or the second decile customers, the AARLs (138.7 and 132.3) obtained by 

logistic regressions are much lower than those (175.6 and 164.4) obtained by 

two-stage BOOSVM. Similarly, the AARLs (116.0 and 113.5) obtained by MOEA in 

the first and second deciles are also much lower than those (175.6 and 164.4) 

obtained by two-stage BOOSVM. Thus, the above comparisons of the results 

indicate that, at budget constraint situation where only 10% or 20% customers can be 

selected, two-stage BOOSVM method can generate higher response rate than logistic 

regression or MOEA when they are used to select customers. 

Table 5.7 contains the results of average accumulate profit lift (AAPL) obtained 

by logistic regression, MOEA method and the two-stage BOOSVM method, 

respectively. Both the logistic regression and MOEA method are based on the 

KDD-98 dataset, while the two-stage BOOSVM method is based on 

SMOTE-processed KDD-98 dataset. Table 5.7 indicates that in the top two deciles, 

the AAPLs of two-stage BOOSVM (714.3 and 538.4) are much higher than those 

(514 and 313.0) of logistic regression. In the top two deciles, the AAPL of two-stage 

BOOSVM (714.3 and 538.4) are also much higher than those (482.1 and 367.6) of 

MOEA. The above comparisons indicate that in budget constraint situation where 
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only ten percent or twenty percent customers are to be chosen, applying two-stage 

BOOSVM method to select customers can bring more profit to the companies than 

applying logistic regression or MOEA. 
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Chapter 6. Conclusions 

 

6.1 Major Findings 

Direct marketing becomes increasingly important in retail, banking, insurance 

and fundraising industries. Customer-selection model is a core element for direct 

marketing advertisings. Customer's response probability and profitability play 

significant roles in the development of customer-selection models. In this study, I 

suggest a customer selection model to realize bi-objective optimization and make a 

contribution in methodologies to solve the difficulties in model construction.  

One of the difficulties to construct such a model is that a better prediction model 

should optimize on both response rate and profit, which are not independent but have 

a close relationship with each other. Two-stage models are commonly used to 

perform multi-objective optimization in direct marketing. However, in existing 

two-stage models, technique in each stage neglects the relationship of response rate 

and profit, and so the combined results in two stages is not theoretically sufficient. I 

suggest an SVM-based BOOSOM model that can take advantage of both SVC and 

SVR. By searching a common maximum-margin hyperplane, the BOOSVM model 

can be used to predict response rate and profit at the same time. The well developed 

theory and significant practical applicability of SVM guarantee the feasibility of 

BOOSVM. It  also fills in the gaps of optimization of two objectives in a single 

SVM-based model in direct marketing.  
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Another contribution of the thesis is the proposed method to handle the 

unbalanced dataset in direct marketing. Commonly, SVM is not good at learning 

patterns in unbalanced dataset and two datasets used in my thesis are both 

significantly unbalanced. In that case, the SVM-based BOOSVM model cannot 

function well. By applying a SMOTE approach to assist BOOSVM model, the 

performance improvement of BOOSVM model is prominent. In other research areas, 

many studies have used SMOTE to help SVM function, however few have adopted 

SMOTE in direct marketing. The successful application of BOOSVM model on 

SMOTE-processed dataset can not only confirm the existing conclusion that SMOTE 

can assist SVMs, but also is one of the original applications of SMOTE method in 

direct marketing area.              

  Lastly, I propose a method to solve the problem arising from the special 

features of direct marketing dataset. To obtain higher response rate, BOOSVM model 

should be learnt from the whole training set. To generate a more powerful profit 

prediction model, BOOSVM model should be learnt from only the responders. The 

paradox inspires me to use a two-stage method to enhance the profit prediction of the 

BOOSVM model. Thus, I design the two-stage BOOSVM model. Specifically, I use 

a regression-used model to give another prediction of potential customers' profit, and 

then I combine the two results from each stage together as the final prediction values. 

The two-stage BOOSVM model give an enhancement to profit prediction and 

overcome the problem that the majority class of non-responders have no effective to 

profit modeling. 
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Two datasets (DM dataset and KDD-98 dataset) are applied for comparisons in 

this study. According to previous literature, DM dataset has a positive relationship 

between response rate and profit, while KDD-98 dataset has a negative relationship 

between two objectives. Testing models on both two datasets can help prove the 

practical applicability of the proposed model. In addition, the KDD-98 dataset, an 

authoritative dataset used in a competition, is widely used by many researchers. Thus, 

the good prediction performance of two-stage BOOSVM model on both datasets is 

sufficient to prove its ability to select customers.   

 

6.2 Implications  

The thesis’ findings may provide important implications to companies. In my 

thesis, a two-stage BOOSVM model is proposed to optimize response rate and profit. 

SMOTE method is used as a data processing method to assist BOOSVM. I show a 

comprehensive framework of customer selection models and the techniques used for 

customer selection in direct marketing. So this study can be utilized as a guideline of 

customer selection models in direct marketing. Meanwhile I also describe the SVM 

theory in detail, thus my thesis can also be used as a guide for SVM. The BOOSVM 

model is obtained from a precise mathematic derivation, and this provides a new idea 

to optimize the accuracy of classification and regression.   

The realization of bi-objective optimization in direct marketing provides direct 

marketers a novel and effective strategy to select customers. By communicating and 

interacting with customers, companies build their huge firm databases. Direct 

marketers can get better customer targeting by applying the two-stage BOOSVM 



78 

model on their firm databases than by applying traditional customer-selection models. 

By the assistance of two-stage BOOSVM model, marketers can obtain more 

responders as well as more profit simultaneously, thus maintain a balanced trade-off 

between the two objectives. In addition, it can also assist direct marketers to reduce 

promotion cost and avoid enraging the customers. The proved remarkable 

performance of two-stage BOOSVM model can enhance the efficiency and 

profitability that direct marketers can obtain more profit by selecting customers with 

a higher accuracy. In addition, better performance in selecting customers in direct 

marketing help companies accumulate more customer information and build more 

sophisticated models.  

 

6.3 Limitations and Directions for Future Research  

First, the evaluation results of these direct marketing models are usually done on 

the basis of response rate (accuracy) and profit. However, in practical direct 

marketing strategy, marketers may be concerned with some other issues, for example, 

customer loyalty. This implies that in addition to response rate and profit, other 

objectives should be taken into consideration by marketers in some special situations. 

My thesis only focuses on two popular objectives and realizes optimization of them. 

In future studies, researchers can perform more detailed analysis to marketer’s 

concerns by combining response rate and profit with customer management. In 

addition, researchers can also combine bi-objective optimization in direct marketing 

with time series analysis, for example, the effect of bi-objective optimization to 

improve companies’ revenue in the short term as well as in long term.  

app:ds:time
app:ds:series
app:ds:analysis
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Second, this research does not fully capture the computational complexity 

problem (the number of support vectors). Computational complexity can be 

optimized with effective software to a certain degree. Moreover, reducing the number 

of support vectors in SVMs can improve operation speed and reduce operation time 

effectively, especially for some large datasets in direct marketing. Researchers may 

also address the problem of computational complexity in future study. 

Third, grid search approach is used to find optimal parameters in my thesis. 

Although grid search is appropriate for the problem of SVM, it is still exhaustive and 

time consuming. In some other studies, random search has been found to be more 

effective in high-dimensional spaces than exhaustive search. In addition, grid search 

is prone to suffer from the curse of dimensionality, but it is often embarrassingly 

parallel because typically the hyper-parameter settings are independent of each other. 

In future studies, researchers may explore some other methods, such as genetic 

algorithm, to search for proper parameters and to balance the complexity and 

precision.  

Last but not the least, the process to select variables has to be addressed. My 

study selects 46 independent variables from 307 of variables for the KDD98 dataset. 

As the number of independent variables is too large, the methodology to select a 

suitable number of independent variables from a large number of variables has to be 

developed. The validity of the independent variables needs to be tested while 

relevant variables have to be controlled. 

 

 

http://en.wikipedia.org/wiki/Curse_of_dimensionality
http://en.wikipedia.org/wiki/Embarrassingly_parallel
http://en.wikipedia.org/wiki/Embarrassingly_parallel
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Appendix A. Variables for the DM Dataset 

Variable name  meaning 

prord85 NUMERIC: prior order from promotion 85 

salcat  NUMERIC: sales category (categorical) 

crcpr85 NUMERIC: prior responses to promotion 85 

totord NUMERIC: total number of orders 

totsale NUMERIC: total amount of sale 

hcrd NUMERIC: use of house credit card 

cash NUMERIC: cash payment 

tele   NUMERIC: order by telephone 

salflg NUMERIC: sales flag 

pred_r1 NUMERIC: predicted recency 

resid_r1 residual of predicted recency 

pred_f1 predicted frequency 

resid_f1 residual of predicted frequency 

pred_m1 predicted money 

resid_m1 residual of predicted money 

SALCLS3 NUMERIC: sales from class 3 products 

SSORCLS3 NUMERIC: orders from class 3 products 

targpbfo NUMERIC: profit before fix cost 
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Appendix B. Variables for the KDD98 Dataset 

Variable name  meaning 

MONTHS_SINCE_ORIGIN Elapsed time since first donation 

IN_HOUSE Is in house donor? 

OVERLAY_SOURCE M = Metromail, P = Polk, B = both 

DONOR_AGE Age as of June 1997 

DONOR_GENDER Actual or inferred gender 

PUBLISHED_PHONE Published telephone listing 

HOME_OWNER Is home owner? 

MOR_HIT Mail order response hit rate 

CLUSTER 54 socioeconomic cluster codes 

SES 5 socioeconomic cluster codes 

INCOME 7 income group levels 

MED_HOUSEHOLD_INCOME Median income 

PER_CAPITA_INCOME Income per capita 

WEALTH 10 wealth rating groups 

MED_HOME_VALUE Median home value 

PCT_OWNER_OCCUPIED Percent owner occupied housing 

URBANICITY U = urban, C = city, S = suburban, 

T.=.town, R.=.rural, M = unknown 

PCT_MALE_MILITARY Percent male military in block 

PCT_MALE_VETERANS Percent male veterans in block 

PCT_VIETNAM_VETERANS Percent Vietnam veterans in block 

PCT_WWII_VETERANS Percent World War II veterans in block 

NUMBER_PROM_12 Number of promotions in the last 12 

months 

CARD_PROM_12 Number of card promotions in the last 12 

months 

FREQ_STATUS_97NK Frequency status, June 1997 

RECENCY_STATUS_96NK Recency status, June 1996 

LAST_GIFT_AMT Amount of the most recent donation 

RECENT_RESPONSE_COUNT Recent response count 

RECENT_RESPONSE_PROP Recent response proportion 

RECENT_AVG_GIFT_AMT Recent average gift amount 

RECENT_STAR_STATUS Recent STAR status (1 = yes, 0 = no) 

CARD_RESPONSE_COUNT Response count since June 1994 

CARD_RESPONSE_PROP Response proportion since June 1994 

CARD_AVG_GIFT_AMT Average gift amount since June 1994 

PROM Total number of promotions 

GIFT_COUNT Total number of donations 

AVG_GIFT_AMT Overall average gift amount 

GIFT_AMOUNT Total gift amount 

MAX_GIFT Maximum gift amount 

GIFT_RANGE Maximum less minimum gift amount 
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MONTHS_SINCE_FIRST First donation date from June 1997 

MONTHS_SINCE_LAST Last donation date from June 1997 

PEP_STAR STAR status ever (1 = yes, 0 = no) 

CARD_PROM Number of card promotion 

MIN_GIFT Minimum gift amount 

TARGET_D (dependent variable) Response amount to June 1997 

solicitation 

TARGET_B (dependent variable) Response to June 1997 solicitation 
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